Metamath Proof Explorer


Theorem rspceaov

Description: A frequently used special case of rspc2ev for operation values, analogous to rspceov . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion rspceaov
|- ( ( C e. A /\ D e. B /\ S = (( C F D )) ) -> E. x e. A E. y e. B S = (( x F y )) )

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( x = C -> F = F )
2 id
 |-  ( x = C -> x = C )
3 eqidd
 |-  ( x = C -> y = y )
4 1 2 3 aoveq123d
 |-  ( x = C -> (( x F y )) = (( C F y )) )
5 4 eqeq2d
 |-  ( x = C -> ( S = (( x F y )) <-> S = (( C F y )) ) )
6 eqidd
 |-  ( y = D -> F = F )
7 eqidd
 |-  ( y = D -> C = C )
8 id
 |-  ( y = D -> y = D )
9 6 7 8 aoveq123d
 |-  ( y = D -> (( C F y )) = (( C F D )) )
10 9 eqeq2d
 |-  ( y = D -> ( S = (( C F y )) <-> S = (( C F D )) ) )
11 5 10 rspc2ev
 |-  ( ( C e. A /\ D e. B /\ S = (( C F D )) ) -> E. x e. A E. y e. B S = (( x F y )) )