Description: A frequently used special case of rspc2ev for operation values, analogous to rspceov . (Contributed by Alexander van der Vekens, 26-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rspceaov | |- ( ( C e. A /\ D e. B /\ S = (( C F D )) ) -> E. x e. A E. y e. B S = (( x F y )) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( x = C -> F = F ) |
|
| 2 | id | |- ( x = C -> x = C ) |
|
| 3 | eqidd | |- ( x = C -> y = y ) |
|
| 4 | 1 2 3 | aoveq123d | |- ( x = C -> (( x F y )) = (( C F y )) ) |
| 5 | 4 | eqeq2d | |- ( x = C -> ( S = (( x F y )) <-> S = (( C F y )) ) ) |
| 6 | eqidd | |- ( y = D -> F = F ) |
|
| 7 | eqidd | |- ( y = D -> C = C ) |
|
| 8 | id | |- ( y = D -> y = D ) |
|
| 9 | 6 7 8 | aoveq123d | |- ( y = D -> (( C F y )) = (( C F D )) ) |
| 10 | 9 | eqeq2d | |- ( y = D -> ( S = (( C F y )) <-> S = (( C F D )) ) ) |
| 11 | 5 10 | rspc2ev | |- ( ( C e. A /\ D e. B /\ S = (( C F D )) ) -> E. x e. A E. y e. B S = (( x F y )) ) |