| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelxpi |
|- ( ( C e. A /\ D e. B ) -> <. C , D >. e. ( A X. B ) ) |
| 2 |
|
fnopafvb |
|- ( ( F Fn ( A X. B ) /\ <. C , D >. e. ( A X. B ) ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
| 4 |
3
|
3impb |
|- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
| 5 |
|
df-aov |
|- (( C F D )) = ( F ''' <. C , D >. ) |
| 6 |
5
|
eqeq1i |
|- ( (( C F D )) = R <-> ( F ''' <. C , D >. ) = R ) |
| 7 |
|
df-ot |
|- <. C , D , R >. = <. <. C , D >. , R >. |
| 8 |
7
|
eleq1i |
|- ( <. C , D , R >. e. F <-> <. <. C , D >. , R >. e. F ) |
| 9 |
4 6 8
|
3bitr4g |
|- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( (( C F D )) = R <-> <. C , D , R >. e. F ) ) |