Step |
Hyp |
Ref |
Expression |
1 |
|
opelxpi |
|- ( ( C e. A /\ D e. B ) -> <. C , D >. e. ( A X. B ) ) |
2 |
|
fnopafvb |
|- ( ( F Fn ( A X. B ) /\ <. C , D >. e. ( A X. B ) ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
3 |
1 2
|
sylan2 |
|- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
4 |
3
|
3impb |
|- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( ( F ''' <. C , D >. ) = R <-> <. <. C , D >. , R >. e. F ) ) |
5 |
|
df-aov |
|- (( C F D )) = ( F ''' <. C , D >. ) |
6 |
5
|
eqeq1i |
|- ( (( C F D )) = R <-> ( F ''' <. C , D >. ) = R ) |
7 |
|
df-ot |
|- <. C , D , R >. = <. <. C , D >. , R >. |
8 |
7
|
eleq1i |
|- ( <. C , D , R >. e. F <-> <. <. C , D >. , R >. e. F ) |
9 |
4 6 8
|
3bitr4g |
|- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( (( C F D )) = R <-> <. C , D , R >. e. F ) ) |