Metamath Proof Explorer


Theorem fnotaovb

Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion fnotaovb F Fn A × B C A D B C F D = R C D R F

Proof

Step Hyp Ref Expression
1 opelxpi C A D B C D A × B
2 fnopafvb F Fn A × B C D A × B F ''' C D = R C D R F
3 1 2 sylan2 F Fn A × B C A D B F ''' C D = R C D R F
4 3 3impb F Fn A × B C A D B F ''' C D = R C D R F
5 df-aov C F D = F ''' C D
6 5 eqeq1i C F D = R F ''' C D = R
7 df-ot C D R = C D R
8 7 eleq1i C D R F C D R F
9 4 6 8 3bitr4g F Fn A × B C A D B C F D = R C D R F