Metamath Proof Explorer


Theorem fnotaovb

Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion fnotaovb ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴𝐷𝐵 ) → ( (( 𝐶 𝐹 𝐷 )) = 𝑅 ↔ ⟨ 𝐶 , 𝐷 , 𝑅 ⟩ ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 opelxpi ( ( 𝐶𝐴𝐷𝐵 ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐴 × 𝐵 ) )
2 fnopafvb ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝐴 × 𝐵 ) ) → ( ( 𝐹 ''' ⟨ 𝐶 , 𝐷 ⟩ ) = 𝑅 ↔ ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑅 ⟩ ∈ 𝐹 ) )
3 1 2 sylan2 ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐵 ) ) → ( ( 𝐹 ''' ⟨ 𝐶 , 𝐷 ⟩ ) = 𝑅 ↔ ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑅 ⟩ ∈ 𝐹 ) )
4 3 3impb ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴𝐷𝐵 ) → ( ( 𝐹 ''' ⟨ 𝐶 , 𝐷 ⟩ ) = 𝑅 ↔ ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑅 ⟩ ∈ 𝐹 ) )
5 df-aov (( 𝐶 𝐹 𝐷 )) = ( 𝐹 ''' ⟨ 𝐶 , 𝐷 ⟩ )
6 5 eqeq1i ( (( 𝐶 𝐹 𝐷 )) = 𝑅 ↔ ( 𝐹 ''' ⟨ 𝐶 , 𝐷 ⟩ ) = 𝑅 )
7 df-ot 𝐶 , 𝐷 , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑅
8 7 eleq1i ( ⟨ 𝐶 , 𝐷 , 𝑅 ⟩ ∈ 𝐹 ↔ ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑅 ⟩ ∈ 𝐹 )
9 4 6 8 3bitr4g ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴𝐷𝐵 ) → ( (( 𝐶 𝐹 𝐷 )) = 𝑅 ↔ ⟨ 𝐶 , 𝐷 , 𝑅 ⟩ ∈ 𝐹 ) )