Metamath Proof Explorer


Theorem rspceaov

Description: A frequently used special case of rspc2ev for operation values, analogous to rspceov . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion rspceaov C A D B S = C F D x A y B S = x F y

Proof

Step Hyp Ref Expression
1 eqidd x = C F = F
2 id x = C x = C
3 eqidd x = C y = y
4 1 2 3 aoveq123d x = C x F y = C F y
5 4 eqeq2d x = C S = x F y S = C F y
6 eqidd y = D F = F
7 eqidd y = D C = C
8 id y = D y = D
9 6 7 8 aoveq123d y = D C F y = C F D
10 9 eqeq2d y = D S = C F y S = C F D
11 5 10 rspc2ev C A D B S = C F D x A y B S = x F y