Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( 𝑥 = 𝐶 → 𝐹 = 𝐹 ) |
2 |
|
id |
⊢ ( 𝑥 = 𝐶 → 𝑥 = 𝐶 ) |
3 |
|
eqidd |
⊢ ( 𝑥 = 𝐶 → 𝑦 = 𝑦 ) |
4 |
1 2 3
|
aoveq123d |
⊢ ( 𝑥 = 𝐶 → (( 𝑥 𝐹 𝑦 )) = (( 𝐶 𝐹 𝑦 )) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝑆 = (( 𝑥 𝐹 𝑦 )) ↔ 𝑆 = (( 𝐶 𝐹 𝑦 )) ) ) |
6 |
|
eqidd |
⊢ ( 𝑦 = 𝐷 → 𝐹 = 𝐹 ) |
7 |
|
eqidd |
⊢ ( 𝑦 = 𝐷 → 𝐶 = 𝐶 ) |
8 |
|
id |
⊢ ( 𝑦 = 𝐷 → 𝑦 = 𝐷 ) |
9 |
6 7 8
|
aoveq123d |
⊢ ( 𝑦 = 𝐷 → (( 𝐶 𝐹 𝑦 )) = (( 𝐶 𝐹 𝐷 )) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝐷 → ( 𝑆 = (( 𝐶 𝐹 𝑦 )) ↔ 𝑆 = (( 𝐶 𝐹 𝐷 )) ) ) |
11 |
5 10
|
rspc2ev |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (( 𝐶 𝐹 𝐷 )) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑆 = (( 𝑥 𝐹 𝑦 )) ) |