| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
⊢ ( 𝑥 = 𝐶 → 𝐹 = 𝐹 ) |
| 2 |
|
id |
⊢ ( 𝑥 = 𝐶 → 𝑥 = 𝐶 ) |
| 3 |
|
eqidd |
⊢ ( 𝑥 = 𝐶 → 𝑦 = 𝑦 ) |
| 4 |
1 2 3
|
aoveq123d |
⊢ ( 𝑥 = 𝐶 → (( 𝑥 𝐹 𝑦 )) = (( 𝐶 𝐹 𝑦 )) ) |
| 5 |
4
|
eqeq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝑆 = (( 𝑥 𝐹 𝑦 )) ↔ 𝑆 = (( 𝐶 𝐹 𝑦 )) ) ) |
| 6 |
|
eqidd |
⊢ ( 𝑦 = 𝐷 → 𝐹 = 𝐹 ) |
| 7 |
|
eqidd |
⊢ ( 𝑦 = 𝐷 → 𝐶 = 𝐶 ) |
| 8 |
|
id |
⊢ ( 𝑦 = 𝐷 → 𝑦 = 𝐷 ) |
| 9 |
6 7 8
|
aoveq123d |
⊢ ( 𝑦 = 𝐷 → (( 𝐶 𝐹 𝑦 )) = (( 𝐶 𝐹 𝐷 )) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝐷 → ( 𝑆 = (( 𝐶 𝐹 𝑦 )) ↔ 𝑆 = (( 𝐶 𝐹 𝐷 )) ) ) |
| 11 |
5 10
|
rspc2ev |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = (( 𝐶 𝐹 𝐷 )) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑆 = (( 𝑥 𝐹 𝑦 )) ) |