Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( s = S /\ x e. RR ) -> s = S ) |
2 |
1
|
imaeq1d |
|- ( ( s = S /\ x e. RR ) -> ( s " { x } ) = ( S " { x } ) ) |
3 |
2
|
fveq2d |
|- ( ( s = S /\ x e. RR ) -> ( vol ` ( s " { x } ) ) = ( vol ` ( S " { x } ) ) ) |
4 |
3
|
itgeq2dv |
|- ( s = S -> S. RR ( vol ` ( s " { x } ) ) _d x = S. RR ( vol ` ( S " { x } ) ) _d x ) |
5 |
|
dfarea |
|- area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x ) |
6 |
|
itgex |
|- S. RR ( vol ` ( S " { x } ) ) _d x e. _V |
7 |
4 5 6
|
fvmpt |
|- ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x ) |