Metamath Proof Explorer


Theorem areaval

Description: The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areaval
|- ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( s = S /\ x e. RR ) -> s = S )
2 1 imaeq1d
 |-  ( ( s = S /\ x e. RR ) -> ( s " { x } ) = ( S " { x } ) )
3 2 fveq2d
 |-  ( ( s = S /\ x e. RR ) -> ( vol ` ( s " { x } ) ) = ( vol ` ( S " { x } ) ) )
4 3 itgeq2dv
 |-  ( s = S -> S. RR ( vol ` ( s " { x } ) ) _d x = S. RR ( vol ` ( S " { x } ) ) _d x )
5 dfarea
 |-  area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x )
6 itgex
 |-  S. RR ( vol ` ( S " { x } ) ) _d x e. _V
7 4 5 6 fvmpt
 |-  ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x )