Metamath Proof Explorer


Theorem areaval

Description: The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areaval SdomareaareaS=volSxdx

Proof

Step Hyp Ref Expression
1 simpl s=Sxs=S
2 1 imaeq1d s=Sxsx=Sx
3 2 fveq2d s=Sxvolsx=volSx
4 3 itgeq2dv s=Svolsxdx=volSxdx
5 dfarea area=sdomareavolsxdx
6 itgex volSxdxV
7 4 5 6 fvmpt SdomareaareaS=volSxdx