Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑥 ∈ ℝ ) → 𝑠 = 𝑆 ) |
2 |
1
|
imaeq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑥 ∈ ℝ ) → ( 𝑠 “ { 𝑥 } ) = ( 𝑆 “ { 𝑥 } ) ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) |
4 |
3
|
itgeq2dv |
⊢ ( 𝑠 = 𝑆 → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ) |
5 |
|
dfarea |
⊢ area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |
6 |
|
itgex |
⊢ ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝑆 ∈ dom area → ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ) |