Metamath Proof Explorer


Theorem areaval

Description: The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areaval ( 𝑆 ∈ dom area → ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑠 = 𝑆𝑥 ∈ ℝ ) → 𝑠 = 𝑆 )
2 1 imaeq1d ( ( 𝑠 = 𝑆𝑥 ∈ ℝ ) → ( 𝑠 “ { 𝑥 } ) = ( 𝑆 “ { 𝑥 } ) )
3 2 fveq2d ( ( 𝑠 = 𝑆𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) )
4 3 itgeq2dv ( 𝑠 = 𝑆 → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 )
5 dfarea area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
6 itgex ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ∈ V
7 4 5 6 fvmpt ( 𝑆 ∈ dom area → ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 )