Metamath Proof Explorer


Theorem dfarea

Description: Rewrite df-area self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dfarea area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 df-area area = ( 𝑠 ∈ { 𝑦 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑦 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑦 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
2 itgex ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ V
3 2 1 dmmpti dom area = { 𝑦 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑦 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑦 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) }
4 3 mpteq1i ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) = ( 𝑠 ∈ { 𝑦 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑦 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑦 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
5 1 4 eqtr4i area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )