| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfarea | ⊢ area  =  ( 𝑠  ∈  dom  area  ↦  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 ) | 
						
							| 2 |  | areambl | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑠  “  { 𝑥 } )  ∈  dom  vol  ∧  ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  ∈  ℝ ) ) | 
						
							| 3 | 2 | simprd | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  ∈  ℝ ) | 
						
							| 4 |  | dmarea | ⊢ ( 𝑠  ∈  dom  area  ↔  ( 𝑠  ⊆  ( ℝ  ×  ℝ )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑠  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑠  “  { 𝑥 } ) ) )  ∈  𝐿1 ) ) | 
						
							| 5 | 4 | simp3bi | ⊢ ( 𝑠  ∈  dom  area  →  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑠  “  { 𝑥 } ) ) )  ∈  𝐿1 ) | 
						
							| 6 | 3 5 | itgrecl | ⊢ ( 𝑠  ∈  dom  area  →  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥  ∈  ℝ ) | 
						
							| 7 | 2 | simpld | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  ( 𝑠  “  { 𝑥 } )  ∈  dom  vol ) | 
						
							| 8 |  | mblss | ⊢ ( ( 𝑠  “  { 𝑥 } )  ∈  dom  vol  →  ( 𝑠  “  { 𝑥 } )  ⊆  ℝ ) | 
						
							| 9 |  | ovolge0 | ⊢ ( ( 𝑠  “  { 𝑥 } )  ⊆  ℝ  →  0  ≤  ( vol* ‘ ( 𝑠  “  { 𝑥 } ) ) ) | 
						
							| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( vol* ‘ ( 𝑠  “  { 𝑥 } ) ) ) | 
						
							| 11 |  | mblvol | ⊢ ( ( 𝑠  “  { 𝑥 } )  ∈  dom  vol  →  ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  =  ( vol* ‘ ( 𝑠  “  { 𝑥 } ) ) ) | 
						
							| 12 | 7 11 | syl | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  =  ( vol* ‘ ( 𝑠  “  { 𝑥 } ) ) ) | 
						
							| 13 | 10 12 | breqtrrd | ⊢ ( ( 𝑠  ∈  dom  area  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( vol ‘ ( 𝑠  “  { 𝑥 } ) ) ) | 
						
							| 14 | 5 3 13 | itgge0 | ⊢ ( 𝑠  ∈  dom  area  →  0  ≤  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 ) | 
						
							| 15 |  | elrege0 | ⊢ ( ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥  ∈  ( 0 [,) +∞ )  ↔  ( ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥  ∈  ℝ  ∧  0  ≤  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 ) ) | 
						
							| 16 | 6 14 15 | sylanbrc | ⊢ ( 𝑠  ∈  dom  area  →  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥  ∈  ( 0 [,) +∞ ) ) | 
						
							| 17 | 1 16 | fmpti | ⊢ area : dom  area ⟶ ( 0 [,) +∞ ) |