Metamath Proof Explorer


Theorem areaf

Description: Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areaf area : dom area ⟶ ( 0 [,) +∞ )

Proof

Step Hyp Ref Expression
1 dfarea area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
2 areambl ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ∈ ℝ ) )
3 2 simprd ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ∈ ℝ )
4 dmarea ( 𝑠 ∈ dom area ↔ ( 𝑠 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑠 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )
5 4 simp3bi ( 𝑠 ∈ dom area → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ) ∈ 𝐿1 )
6 3 5 itgrecl ( 𝑠 ∈ dom area → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ℝ )
7 2 simpld ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( 𝑠 “ { 𝑥 } ) ∈ dom vol )
8 mblss ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol → ( 𝑠 “ { 𝑥 } ) ⊆ ℝ )
9 ovolge0 ( ( 𝑠 “ { 𝑥 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) )
10 7 8 9 3syl ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) )
11 mblvol ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) )
12 7 11 syl ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) )
13 10 12 breqtrrd ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) )
14 5 3 13 itgge0 ( 𝑠 ∈ dom area → 0 ≤ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
15 elrege0 ( ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ℝ ∧ 0 ≤ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) )
16 6 14 15 sylanbrc ( 𝑠 ∈ dom area → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ( 0 [,) +∞ ) )
17 1 16 fmpti area : dom area ⟶ ( 0 [,) +∞ )