Step |
Hyp |
Ref |
Expression |
1 |
|
dfarea |
⊢ area = ( 𝑠 ∈ dom area ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |
2 |
|
areambl |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ∈ ℝ ) ) |
3 |
2
|
simprd |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ∈ ℝ ) |
4 |
|
dmarea |
⊢ ( 𝑠 ∈ dom area ↔ ( 𝑠 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑠 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
5 |
4
|
simp3bi |
⊢ ( 𝑠 ∈ dom area → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
6 |
3 5
|
itgrecl |
⊢ ( 𝑠 ∈ dom area → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ℝ ) |
7 |
2
|
simpld |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( 𝑠 “ { 𝑥 } ) ∈ dom vol ) |
8 |
|
mblss |
⊢ ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol → ( 𝑠 “ { 𝑥 } ) ⊆ ℝ ) |
9 |
|
ovolge0 |
⊢ ( ( 𝑠 “ { 𝑥 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) ) |
10 |
7 8 9
|
3syl |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) ) |
11 |
|
mblvol |
⊢ ( ( 𝑠 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) ) |
12 |
7 11
|
syl |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) = ( vol* ‘ ( 𝑠 “ { 𝑥 } ) ) ) |
13 |
10 12
|
breqtrrd |
⊢ ( ( 𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) ) |
14 |
5 3 13
|
itgge0 |
⊢ ( 𝑠 ∈ dom area → 0 ≤ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |
15 |
|
elrege0 |
⊢ ( ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ℝ ∧ 0 ≤ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) ) |
16 |
6 14 15
|
sylanbrc |
⊢ ( 𝑠 ∈ dom area → ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ ( 0 [,) +∞ ) ) |
17 |
1 16
|
fmpti |
⊢ area : dom area ⟶ ( 0 [,) +∞ ) |