| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfarea |  |-  area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x ) | 
						
							| 2 |  | areambl |  |-  ( ( s e. dom area /\ x e. RR ) -> ( ( s " { x } ) e. dom vol /\ ( vol ` ( s " { x } ) ) e. RR ) ) | 
						
							| 3 | 2 | simprd |  |-  ( ( s e. dom area /\ x e. RR ) -> ( vol ` ( s " { x } ) ) e. RR ) | 
						
							| 4 |  | dmarea |  |-  ( s e. dom area <-> ( s C_ ( RR X. RR ) /\ A. x e. RR ( s " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( s " { x } ) ) ) e. L^1 ) ) | 
						
							| 5 | 4 | simp3bi |  |-  ( s e. dom area -> ( x e. RR |-> ( vol ` ( s " { x } ) ) ) e. L^1 ) | 
						
							| 6 | 3 5 | itgrecl |  |-  ( s e. dom area -> S. RR ( vol ` ( s " { x } ) ) _d x e. RR ) | 
						
							| 7 | 2 | simpld |  |-  ( ( s e. dom area /\ x e. RR ) -> ( s " { x } ) e. dom vol ) | 
						
							| 8 |  | mblss |  |-  ( ( s " { x } ) e. dom vol -> ( s " { x } ) C_ RR ) | 
						
							| 9 |  | ovolge0 |  |-  ( ( s " { x } ) C_ RR -> 0 <_ ( vol* ` ( s " { x } ) ) ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( ( s e. dom area /\ x e. RR ) -> 0 <_ ( vol* ` ( s " { x } ) ) ) | 
						
							| 11 |  | mblvol |  |-  ( ( s " { x } ) e. dom vol -> ( vol ` ( s " { x } ) ) = ( vol* ` ( s " { x } ) ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ( s e. dom area /\ x e. RR ) -> ( vol ` ( s " { x } ) ) = ( vol* ` ( s " { x } ) ) ) | 
						
							| 13 | 10 12 | breqtrrd |  |-  ( ( s e. dom area /\ x e. RR ) -> 0 <_ ( vol ` ( s " { x } ) ) ) | 
						
							| 14 | 5 3 13 | itgge0 |  |-  ( s e. dom area -> 0 <_ S. RR ( vol ` ( s " { x } ) ) _d x ) | 
						
							| 15 |  | elrege0 |  |-  ( S. RR ( vol ` ( s " { x } ) ) _d x e. ( 0 [,) +oo ) <-> ( S. RR ( vol ` ( s " { x } ) ) _d x e. RR /\ 0 <_ S. RR ( vol ` ( s " { x } ) ) _d x ) ) | 
						
							| 16 | 6 14 15 | sylanbrc |  |-  ( s e. dom area -> S. RR ( vol ` ( s " { x } ) ) _d x e. ( 0 [,) +oo ) ) | 
						
							| 17 | 1 16 | fmpti |  |-  area : dom area --> ( 0 [,) +oo ) |