Step |
Hyp |
Ref |
Expression |
1 |
|
dfarea |
|- area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x ) |
2 |
|
areambl |
|- ( ( s e. dom area /\ x e. RR ) -> ( ( s " { x } ) e. dom vol /\ ( vol ` ( s " { x } ) ) e. RR ) ) |
3 |
2
|
simprd |
|- ( ( s e. dom area /\ x e. RR ) -> ( vol ` ( s " { x } ) ) e. RR ) |
4 |
|
dmarea |
|- ( s e. dom area <-> ( s C_ ( RR X. RR ) /\ A. x e. RR ( s " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( s " { x } ) ) ) e. L^1 ) ) |
5 |
4
|
simp3bi |
|- ( s e. dom area -> ( x e. RR |-> ( vol ` ( s " { x } ) ) ) e. L^1 ) |
6 |
3 5
|
itgrecl |
|- ( s e. dom area -> S. RR ( vol ` ( s " { x } ) ) _d x e. RR ) |
7 |
2
|
simpld |
|- ( ( s e. dom area /\ x e. RR ) -> ( s " { x } ) e. dom vol ) |
8 |
|
mblss |
|- ( ( s " { x } ) e. dom vol -> ( s " { x } ) C_ RR ) |
9 |
|
ovolge0 |
|- ( ( s " { x } ) C_ RR -> 0 <_ ( vol* ` ( s " { x } ) ) ) |
10 |
7 8 9
|
3syl |
|- ( ( s e. dom area /\ x e. RR ) -> 0 <_ ( vol* ` ( s " { x } ) ) ) |
11 |
|
mblvol |
|- ( ( s " { x } ) e. dom vol -> ( vol ` ( s " { x } ) ) = ( vol* ` ( s " { x } ) ) ) |
12 |
7 11
|
syl |
|- ( ( s e. dom area /\ x e. RR ) -> ( vol ` ( s " { x } ) ) = ( vol* ` ( s " { x } ) ) ) |
13 |
10 12
|
breqtrrd |
|- ( ( s e. dom area /\ x e. RR ) -> 0 <_ ( vol ` ( s " { x } ) ) ) |
14 |
5 3 13
|
itgge0 |
|- ( s e. dom area -> 0 <_ S. RR ( vol ` ( s " { x } ) ) _d x ) |
15 |
|
elrege0 |
|- ( S. RR ( vol ` ( s " { x } ) ) _d x e. ( 0 [,) +oo ) <-> ( S. RR ( vol ` ( s " { x } ) ) _d x e. RR /\ 0 <_ S. RR ( vol ` ( s " { x } ) ) _d x ) ) |
16 |
6 14 15
|
sylanbrc |
|- ( s e. dom area -> S. RR ( vol ` ( s " { x } ) ) _d x e. ( 0 [,) +oo ) ) |
17 |
1 16
|
fmpti |
|- area : dom area --> ( 0 [,) +oo ) |