Metamath Proof Explorer


Theorem dfarea

Description: Rewrite df-area self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dfarea
|- area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x )

Proof

Step Hyp Ref Expression
1 df-area
 |-  area = ( s e. { y e. ~P ( RR X. RR ) | ( A. x e. RR ( y " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( y " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x )
2 itgex
 |-  S. RR ( vol ` ( s " { x } ) ) _d x e. _V
3 2 1 dmmpti
 |-  dom area = { y e. ~P ( RR X. RR ) | ( A. x e. RR ( y " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( y " { x } ) ) ) e. L^1 ) }
4 3 mpteq1i
 |-  ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x ) = ( s e. { y e. ~P ( RR X. RR ) | ( A. x e. RR ( y " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( y " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x )
5 1 4 eqtr4i
 |-  area = ( s e. dom area |-> S. RR ( vol ` ( s " { x } ) ) _d x )