Metamath Proof Explorer


Theorem areaf

Description: Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areaf area:domarea0+∞

Proof

Step Hyp Ref Expression
1 dfarea area=sdomareavolsxdx
2 areambl sdomareaxsxdomvolvolsx
3 2 simprd sdomareaxvolsx
4 dmarea sdomareas2xsxvol-1xvolsx𝐿1
5 4 simp3bi sdomareaxvolsx𝐿1
6 3 5 itgrecl sdomareavolsxdx
7 2 simpld sdomareaxsxdomvol
8 mblss sxdomvolsx
9 ovolge0 sx0vol*sx
10 7 8 9 3syl sdomareax0vol*sx
11 mblvol sxdomvolvolsx=vol*sx
12 7 11 syl sdomareaxvolsx=vol*sx
13 10 12 breqtrrd sdomareax0volsx
14 5 3 13 itgge0 sdomarea0volsxdx
15 elrege0 volsxdx0+∞volsxdx0volsxdx
16 6 14 15 sylanbrc sdomareavolsxdx0+∞
17 1 16 fmpti area:domarea0+∞