| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclinvg.a |
|- A = ( algSc ` W ) |
| 2 |
|
asclinvg.r |
|- R = ( Scalar ` W ) |
| 3 |
|
asclinvg.k |
|- B = ( Base ` R ) |
| 4 |
|
asclinvg.i |
|- I = ( invg ` R ) |
| 5 |
|
asclinvg.j |
|- J = ( invg ` W ) |
| 6 |
|
simp2 |
|- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> W e. Ring ) |
| 7 |
|
simp1 |
|- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> W e. LMod ) |
| 8 |
1 2 6 7
|
asclghm |
|- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> A e. ( R GrpHom W ) ) |
| 9 |
|
simp3 |
|- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> C e. B ) |
| 10 |
3 4 5
|
ghminv |
|- ( ( A e. ( R GrpHom W ) /\ C e. B ) -> ( A ` ( I ` C ) ) = ( J ` ( A ` C ) ) ) |
| 11 |
10
|
eqcomd |
|- ( ( A e. ( R GrpHom W ) /\ C e. B ) -> ( J ` ( A ` C ) ) = ( A ` ( I ` C ) ) ) |
| 12 |
8 9 11
|
syl2anc |
|- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> ( J ` ( A ` C ) ) = ( A ` ( I ` C ) ) ) |