| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclinvg.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
asclinvg.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
asclinvg.k |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
asclinvg.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
| 5 |
|
asclinvg.j |
⊢ 𝐽 = ( invg ‘ 𝑊 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝑊 ∈ Ring ) |
| 7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝑊 ∈ LMod ) |
| 8 |
1 2 6 7
|
asclghm |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 10 |
3 4 5
|
ghminv |
⊢ ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) = ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
| 12 |
8 9 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) = ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |