Metamath Proof Explorer


Theorem asclinvg

Description: The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses asclinvg.a A=algScW
asclinvg.r R=ScalarW
asclinvg.k B=BaseR
asclinvg.i I=invgR
asclinvg.j J=invgW
Assertion asclinvg WLModWRingCBJAC=AIC

Proof

Step Hyp Ref Expression
1 asclinvg.a A=algScW
2 asclinvg.r R=ScalarW
3 asclinvg.k B=BaseR
4 asclinvg.i I=invgR
5 asclinvg.j J=invgW
6 simp2 WLModWRingCBWRing
7 simp1 WLModWRingCBWLMod
8 1 2 6 7 asclghm WLModWRingCBARGrpHomW
9 simp3 WLModWRingCBCB
10 3 4 5 ghminv ARGrpHomWCBAIC=JAC
11 10 eqcomd ARGrpHomWCBJAC=AIC
12 8 9 11 syl2anc WLModWRingCBJAC=AIC