Step |
Hyp |
Ref |
Expression |
1 |
|
atnlt.s |
|- .< = ( lt ` K ) |
2 |
|
atnlt.a |
|- A = ( Atoms ` K ) |
3 |
1
|
pltirr |
|- ( ( K e. AtLat /\ P e. A ) -> -. P .< P ) |
4 |
3
|
3adant3 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< P ) |
5 |
|
breq2 |
|- ( P = Q -> ( P .< P <-> P .< Q ) ) |
6 |
5
|
notbid |
|- ( P = Q -> ( -. P .< P <-> -. P .< Q ) ) |
7 |
4 6
|
syl5ibcom |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P = Q -> -. P .< Q ) ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
8 1
|
pltle |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P ( le ` K ) Q ) ) |
10 |
8 2
|
atcmp |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P ( le ` K ) Q <-> P = Q ) ) |
11 |
9 10
|
sylibd |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P = Q ) ) |
12 |
11
|
necon3ad |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. P .< Q ) ) |
13 |
7 12
|
pm2.61dne |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< Q ) |