| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atnlt.s |
|- .< = ( lt ` K ) |
| 2 |
|
atnlt.a |
|- A = ( Atoms ` K ) |
| 3 |
1
|
pltirr |
|- ( ( K e. AtLat /\ P e. A ) -> -. P .< P ) |
| 4 |
3
|
3adant3 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< P ) |
| 5 |
|
breq2 |
|- ( P = Q -> ( P .< P <-> P .< Q ) ) |
| 6 |
5
|
notbid |
|- ( P = Q -> ( -. P .< P <-> -. P .< Q ) ) |
| 7 |
4 6
|
syl5ibcom |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P = Q -> -. P .< Q ) ) |
| 8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 9 |
8 1
|
pltle |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P ( le ` K ) Q ) ) |
| 10 |
8 2
|
atcmp |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P ( le ` K ) Q <-> P = Q ) ) |
| 11 |
9 10
|
sylibd |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P = Q ) ) |
| 12 |
11
|
necon3ad |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. P .< Q ) ) |
| 13 |
7 12
|
pm2.61dne |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< Q ) |