| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
|- F/_ n if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) |
| 2 |
|
nfcv |
|- F/_ m if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) |
| 3 |
|
fveqeq2 |
|- ( m = n -> ( ( F ` m ) = (/) <-> ( F ` n ) = (/) ) ) |
| 4 |
|
fveq2 |
|- ( m = n -> ( F ` m ) = ( F ` n ) ) |
| 5 |
3 4
|
ifbieq2d |
|- ( m = n -> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 6 |
1 2 5
|
cbvmpt |
|- ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) = ( n e. _om |-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 7 |
|
nfcv |
|- F/_ n ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) |
| 8 |
|
nfcv |
|- F/_ m { n } |
| 9 |
|
nffvmpt1 |
|- F/_ m ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) |
| 10 |
8 9
|
nfxp |
|- F/_ m ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) |
| 11 |
|
sneq |
|- ( m = n -> { m } = { n } ) |
| 12 |
|
fveq2 |
|- ( m = n -> ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) = ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) |
| 13 |
11 12
|
xpeq12d |
|- ( m = n -> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) = ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) |
| 14 |
7 10 13
|
cbvmpt |
|- ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) = ( n e. _om |-> ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) |
| 15 |
|
nfcv |
|- F/_ n ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) |
| 16 |
|
nfcv |
|- F/_ m 2nd |
| 17 |
|
nfcv |
|- F/_ m f |
| 18 |
|
nffvmpt1 |
|- F/_ m ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) |
| 19 |
17 18
|
nffv |
|- F/_ m ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) |
| 20 |
16 19
|
nffv |
|- F/_ m ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) |
| 21 |
|
2fveq3 |
|- ( m = n -> ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) = ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) |
| 22 |
21
|
fveq2d |
|- ( m = n -> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) = ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) |
| 23 |
15 20 22
|
cbvmpt |
|- ( m e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) ) = ( n e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) |
| 24 |
6 14 23
|
axcc2lem |
|- E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |