Metamath Proof Explorer


Theorem ballotlemsi

Description: The image by S of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017)

Ref Expression
Hypotheses ballotth.m
|- M e. NN
ballotth.n
|- N e. NN
ballotth.o
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
ballotth.p
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
ballotth.f
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
ballotth.e
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
ballotth.mgtn
|- N < M
ballotth.i
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) )
ballotth.s
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) )
Assertion ballotlemsi
|- ( C e. ( O \ E ) -> ( ( S ` C ) ` ( I ` C ) ) = 1 )

Proof

Step Hyp Ref Expression
1 ballotth.m
 |-  M e. NN
2 ballotth.n
 |-  N e. NN
3 ballotth.o
 |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M }
4 ballotth.p
 |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) )
5 ballotth.f
 |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) )
6 ballotth.e
 |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) }
7 ballotth.mgtn
 |-  N < M
8 ballotth.i
 |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) )
9 ballotth.s
 |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) )
10 1 2 3 4 5 6 7 8 ballotlemiex
 |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) )
11 10 simpld
 |-  ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) )
12 1 2 3 4 5 6 7 8 9 ballotlemsv
 |-  ( ( C e. ( O \ E ) /\ ( I ` C ) e. ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) ` ( I ` C ) ) = if ( ( I ` C ) <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - ( I ` C ) ) , ( I ` C ) ) )
13 11 12 mpdan
 |-  ( C e. ( O \ E ) -> ( ( S ` C ) ` ( I ` C ) ) = if ( ( I ` C ) <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - ( I ` C ) ) , ( I ` C ) ) )
14 elfzelz
 |-  ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. ZZ )
15 14 zred
 |-  ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. RR )
16 11 15 syl
 |-  ( C e. ( O \ E ) -> ( I ` C ) e. RR )
17 16 leidd
 |-  ( C e. ( O \ E ) -> ( I ` C ) <_ ( I ` C ) )
18 17 iftrued
 |-  ( C e. ( O \ E ) -> if ( ( I ` C ) <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - ( I ` C ) ) , ( I ` C ) ) = ( ( ( I ` C ) + 1 ) - ( I ` C ) ) )
19 16 recnd
 |-  ( C e. ( O \ E ) -> ( I ` C ) e. CC )
20 1cnd
 |-  ( C e. ( O \ E ) -> 1 e. CC )
21 19 20 pncan2d
 |-  ( C e. ( O \ E ) -> ( ( ( I ` C ) + 1 ) - ( I ` C ) ) = 1 )
22 13 18 21 3eqtrd
 |-  ( C e. ( O \ E ) -> ( ( S ` C ) ` ( I ` C ) ) = 1 )