Metamath Proof Explorer


Theorem ballotlemsi

Description: The image by S of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
Assertion ballotlemsi C O E S C I C = 1

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
11 10 simpld C O E I C 1 M + N
12 1 2 3 4 5 6 7 8 9 ballotlemsv C O E I C 1 M + N S C I C = if I C I C I C + 1 - I C I C
13 11 12 mpdan C O E S C I C = if I C I C I C + 1 - I C I C
14 elfzelz I C 1 M + N I C
15 14 zred I C 1 M + N I C
16 11 15 syl C O E I C
17 16 leidd C O E I C I C
18 17 iftrued C O E if I C I C I C + 1 - I C I C = I C + 1 - I C
19 16 recnd C O E I C
20 1cnd C O E 1
21 19 20 pncan2d C O E I C + 1 - I C = 1
22 13 18 21 3eqtrd C O E S C I C = 1