Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxplem.c |
|- ( ph -> C e. CC ) |
2 |
|
binomcxplem.k |
|- ( ph -> K e. NN ) |
3 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
4 |
1 3
|
npcand |
|- ( ph -> ( ( C - K ) + K ) = C ) |
5 |
4
|
oveq1d |
|- ( ph -> ( ( ( C - K ) + K ) x. ( C FallFac K ) ) = ( C x. ( C FallFac K ) ) ) |
6 |
1 3
|
subcld |
|- ( ph -> ( C - K ) e. CC ) |
7 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
8 |
|
fallfaccl |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) e. CC ) |
9 |
1 7 8
|
syl2anc |
|- ( ph -> ( C FallFac K ) e. CC ) |
10 |
6 3 9
|
adddird |
|- ( ph -> ( ( ( C - K ) + K ) x. ( C FallFac K ) ) = ( ( ( C - K ) x. ( C FallFac K ) ) + ( K x. ( C FallFac K ) ) ) ) |
11 |
5 10
|
eqtr3d |
|- ( ph -> ( C x. ( C FallFac K ) ) = ( ( ( C - K ) x. ( C FallFac K ) ) + ( K x. ( C FallFac K ) ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( C x. ( C FallFac K ) ) / ( ! ` K ) ) = ( ( ( ( C - K ) x. ( C FallFac K ) ) + ( K x. ( C FallFac K ) ) ) / ( ! ` K ) ) ) |
13 |
1 7
|
bccval |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
14 |
13
|
oveq2d |
|- ( ph -> ( C x. ( C _Cc K ) ) = ( C x. ( ( C FallFac K ) / ( ! ` K ) ) ) ) |
15 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
16 |
15
|
nncnd |
|- ( K e. NN0 -> ( ! ` K ) e. CC ) |
17 |
7 16
|
syl |
|- ( ph -> ( ! ` K ) e. CC ) |
18 |
|
facne0 |
|- ( K e. NN0 -> ( ! ` K ) =/= 0 ) |
19 |
7 18
|
syl |
|- ( ph -> ( ! ` K ) =/= 0 ) |
20 |
1 9 17 19
|
divassd |
|- ( ph -> ( ( C x. ( C FallFac K ) ) / ( ! ` K ) ) = ( C x. ( ( C FallFac K ) / ( ! ` K ) ) ) ) |
21 |
14 20
|
eqtr4d |
|- ( ph -> ( C x. ( C _Cc K ) ) = ( ( C x. ( C FallFac K ) ) / ( ! ` K ) ) ) |
22 |
6 9 17 19
|
divassd |
|- ( ph -> ( ( ( C - K ) x. ( C FallFac K ) ) / ( ! ` K ) ) = ( ( C - K ) x. ( ( C FallFac K ) / ( ! ` K ) ) ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( ( ( C - K ) x. ( C FallFac K ) ) / ( ! ` K ) ) + ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) ) = ( ( ( C - K ) x. ( ( C FallFac K ) / ( ! ` K ) ) ) + ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) ) ) |
24 |
6 9
|
mulcld |
|- ( ph -> ( ( C - K ) x. ( C FallFac K ) ) e. CC ) |
25 |
3 9
|
mulcld |
|- ( ph -> ( K x. ( C FallFac K ) ) e. CC ) |
26 |
24 25 17 19
|
divdird |
|- ( ph -> ( ( ( ( C - K ) x. ( C FallFac K ) ) + ( K x. ( C FallFac K ) ) ) / ( ! ` K ) ) = ( ( ( ( C - K ) x. ( C FallFac K ) ) / ( ! ` K ) ) + ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) ) ) |
27 |
13
|
oveq2d |
|- ( ph -> ( ( C - K ) x. ( C _Cc K ) ) = ( ( C - K ) x. ( ( C FallFac K ) / ( ! ` K ) ) ) ) |
28 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
29 |
2 28
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
30 |
|
faccl |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. NN ) |
31 |
30
|
nncnd |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. CC ) |
32 |
29 31
|
syl |
|- ( ph -> ( ! ` ( K - 1 ) ) e. CC ) |
33 |
|
facne0 |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) =/= 0 ) |
34 |
29 33
|
syl |
|- ( ph -> ( ! ` ( K - 1 ) ) =/= 0 ) |
35 |
2
|
nnne0d |
|- ( ph -> K =/= 0 ) |
36 |
9 32 3 34 35
|
divcan5d |
|- ( ph -> ( ( K x. ( C FallFac K ) ) / ( K x. ( ! ` ( K - 1 ) ) ) ) = ( ( C FallFac K ) / ( ! ` ( K - 1 ) ) ) ) |
37 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
38 |
3 37
|
npcand |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
39 |
38
|
fveq2d |
|- ( ph -> ( ! ` ( ( K - 1 ) + 1 ) ) = ( ! ` K ) ) |
40 |
38
|
oveq2d |
|- ( ph -> ( ( ! ` ( K - 1 ) ) x. ( ( K - 1 ) + 1 ) ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
41 |
|
facp1 |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( ( K - 1 ) + 1 ) ) = ( ( ! ` ( K - 1 ) ) x. ( ( K - 1 ) + 1 ) ) ) |
42 |
29 41
|
syl |
|- ( ph -> ( ! ` ( ( K - 1 ) + 1 ) ) = ( ( ! ` ( K - 1 ) ) x. ( ( K - 1 ) + 1 ) ) ) |
43 |
3 32
|
mulcomd |
|- ( ph -> ( K x. ( ! ` ( K - 1 ) ) ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
44 |
40 42 43
|
3eqtr4d |
|- ( ph -> ( ! ` ( ( K - 1 ) + 1 ) ) = ( K x. ( ! ` ( K - 1 ) ) ) ) |
45 |
39 44
|
eqtr3d |
|- ( ph -> ( ! ` K ) = ( K x. ( ! ` ( K - 1 ) ) ) ) |
46 |
45
|
oveq2d |
|- ( ph -> ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) = ( ( K x. ( C FallFac K ) ) / ( K x. ( ! ` ( K - 1 ) ) ) ) ) |
47 |
3 37
|
subcld |
|- ( ph -> ( K - 1 ) e. CC ) |
48 |
1 47
|
subcld |
|- ( ph -> ( C - ( K - 1 ) ) e. CC ) |
49 |
|
fallfaccl |
|- ( ( C e. CC /\ ( K - 1 ) e. NN0 ) -> ( C FallFac ( K - 1 ) ) e. CC ) |
50 |
1 29 49
|
syl2anc |
|- ( ph -> ( C FallFac ( K - 1 ) ) e. CC ) |
51 |
48 50 32 34
|
divassd |
|- ( ph -> ( ( ( C - ( K - 1 ) ) x. ( C FallFac ( K - 1 ) ) ) / ( ! ` ( K - 1 ) ) ) = ( ( C - ( K - 1 ) ) x. ( ( C FallFac ( K - 1 ) ) / ( ! ` ( K - 1 ) ) ) ) ) |
52 |
38
|
oveq2d |
|- ( ph -> ( C FallFac ( ( K - 1 ) + 1 ) ) = ( C FallFac K ) ) |
53 |
|
fallfacp1 |
|- ( ( C e. CC /\ ( K - 1 ) e. NN0 ) -> ( C FallFac ( ( K - 1 ) + 1 ) ) = ( ( C FallFac ( K - 1 ) ) x. ( C - ( K - 1 ) ) ) ) |
54 |
1 29 53
|
syl2anc |
|- ( ph -> ( C FallFac ( ( K - 1 ) + 1 ) ) = ( ( C FallFac ( K - 1 ) ) x. ( C - ( K - 1 ) ) ) ) |
55 |
52 54
|
eqtr3d |
|- ( ph -> ( C FallFac K ) = ( ( C FallFac ( K - 1 ) ) x. ( C - ( K - 1 ) ) ) ) |
56 |
48 50
|
mulcomd |
|- ( ph -> ( ( C - ( K - 1 ) ) x. ( C FallFac ( K - 1 ) ) ) = ( ( C FallFac ( K - 1 ) ) x. ( C - ( K - 1 ) ) ) ) |
57 |
55 56
|
eqtr4d |
|- ( ph -> ( C FallFac K ) = ( ( C - ( K - 1 ) ) x. ( C FallFac ( K - 1 ) ) ) ) |
58 |
57
|
oveq1d |
|- ( ph -> ( ( C FallFac K ) / ( ! ` ( K - 1 ) ) ) = ( ( ( C - ( K - 1 ) ) x. ( C FallFac ( K - 1 ) ) ) / ( ! ` ( K - 1 ) ) ) ) |
59 |
1 29
|
bccval |
|- ( ph -> ( C _Cc ( K - 1 ) ) = ( ( C FallFac ( K - 1 ) ) / ( ! ` ( K - 1 ) ) ) ) |
60 |
59
|
oveq2d |
|- ( ph -> ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) = ( ( C - ( K - 1 ) ) x. ( ( C FallFac ( K - 1 ) ) / ( ! ` ( K - 1 ) ) ) ) ) |
61 |
51 58 60
|
3eqtr4rd |
|- ( ph -> ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) = ( ( C FallFac K ) / ( ! ` ( K - 1 ) ) ) ) |
62 |
36 46 61
|
3eqtr4rd |
|- ( ph -> ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) = ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) ) |
63 |
27 62
|
oveq12d |
|- ( ph -> ( ( ( C - K ) x. ( C _Cc K ) ) + ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) ) = ( ( ( C - K ) x. ( ( C FallFac K ) / ( ! ` K ) ) ) + ( ( K x. ( C FallFac K ) ) / ( ! ` K ) ) ) ) |
64 |
23 26 63
|
3eqtr4rd |
|- ( ph -> ( ( ( C - K ) x. ( C _Cc K ) ) + ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) ) = ( ( ( ( C - K ) x. ( C FallFac K ) ) + ( K x. ( C FallFac K ) ) ) / ( ! ` K ) ) ) |
65 |
12 21 64
|
3eqtr4rd |
|- ( ph -> ( ( ( C - K ) x. ( C _Cc K ) ) + ( ( C - ( K - 1 ) ) x. ( C _Cc ( K - 1 ) ) ) ) = ( C x. ( C _Cc K ) ) ) |