| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
| 2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
| 3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
| 4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
| 5 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
| 6 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 7 |
|
binom |
|- ( ( A e. CC /\ B e. CC /\ C e. NN0 ) -> ( ( A + B ) ^ C ) = sum_ k e. ( 0 ... C ) ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 8 |
7
|
3expia |
|- ( ( A e. CC /\ B e. CC ) -> ( C e. NN0 -> ( ( A + B ) ^ C ) = sum_ k e. ( 0 ... C ) ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) ) |
| 9 |
5 6 8
|
syl2anc |
|- ( ph -> ( C e. NN0 -> ( ( A + B ) ^ C ) = sum_ k e. ( 0 ... C ) ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) ) |
| 10 |
9
|
imp |
|- ( ( ph /\ C e. NN0 ) -> ( ( A + B ) ^ C ) = sum_ k e. ( 0 ... C ) ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ C e. NN0 ) -> A e. CC ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ C e. NN0 ) -> B e. CC ) |
| 13 |
11 12
|
addcld |
|- ( ( ph /\ C e. NN0 ) -> ( A + B ) e. CC ) |
| 14 |
|
simpr |
|- ( ( ph /\ C e. NN0 ) -> C e. NN0 ) |
| 15 |
|
cxpexp |
|- ( ( ( A + B ) e. CC /\ C e. NN0 ) -> ( ( A + B ) ^c C ) = ( ( A + B ) ^ C ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ph /\ C e. NN0 ) -> ( ( A + B ) ^c C ) = ( ( A + B ) ^ C ) ) |
| 17 |
|
elfznn0 |
|- ( k e. ( 0 ... C ) -> k e. NN0 ) |
| 18 |
|
simplr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> C e. NN0 ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
| 20 |
18 19
|
bccbc |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( C _Cc k ) = ( C _C k ) ) |
| 21 |
17 20
|
sylan2 |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( C _Cc k ) = ( C _C k ) ) |
| 22 |
5
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> A e. CC ) |
| 23 |
|
elfzle2 |
|- ( k e. ( 0 ... C ) -> k <_ C ) |
| 24 |
23
|
adantl |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> k <_ C ) |
| 25 |
|
nn0sub |
|- ( ( k e. NN0 /\ C e. NN0 ) -> ( k <_ C <-> ( C - k ) e. NN0 ) ) |
| 26 |
25
|
ancoms |
|- ( ( C e. NN0 /\ k e. NN0 ) -> ( k <_ C <-> ( C - k ) e. NN0 ) ) |
| 27 |
26
|
adantll |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( k <_ C <-> ( C - k ) e. NN0 ) ) |
| 28 |
17 27
|
sylan2 |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( k <_ C <-> ( C - k ) e. NN0 ) ) |
| 29 |
24 28
|
mpbid |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( C - k ) e. NN0 ) |
| 30 |
|
cxpexp |
|- ( ( A e. CC /\ ( C - k ) e. NN0 ) -> ( A ^c ( C - k ) ) = ( A ^ ( C - k ) ) ) |
| 31 |
22 29 30
|
syl2anc |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( A ^c ( C - k ) ) = ( A ^ ( C - k ) ) ) |
| 32 |
31
|
oveq1d |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) |
| 33 |
21 32
|
oveq12d |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( 0 ... C ) ) -> ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 34 |
33
|
sumeq2dv |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... C ) ( ( C _C k ) x. ( ( A ^ ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 35 |
10 16 34
|
3eqtr4d |
|- ( ( ph /\ C e. NN0 ) -> ( ( A + B ) ^c C ) = sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 36 |
4
|
adantr |
|- ( ( ph /\ C e. NN0 ) -> C e. CC ) |
| 37 |
13 36
|
cxpcld |
|- ( ( ph /\ C e. NN0 ) -> ( ( A + B ) ^c C ) e. CC ) |
| 38 |
35 37
|
eqeltrrd |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 39 |
38
|
addridd |
|- ( ( ph /\ C e. NN0 ) -> ( sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + 0 ) = sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 40 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 41 |
|
eqid |
|- ( ZZ>= ` ( C + 1 ) ) = ( ZZ>= ` ( C + 1 ) ) |
| 42 |
|
1nn0 |
|- 1 e. NN0 |
| 43 |
42
|
a1i |
|- ( ( ph /\ C e. NN0 ) -> 1 e. NN0 ) |
| 44 |
14 43
|
nn0addcld |
|- ( ( ph /\ C e. NN0 ) -> ( C + 1 ) e. NN0 ) |
| 45 |
|
eqidd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) = ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ) |
| 46 |
|
simpr |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> j = k ) |
| 47 |
46
|
oveq2d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( C _Cc j ) = ( C _Cc k ) ) |
| 48 |
46
|
oveq2d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( C - j ) = ( C - k ) ) |
| 49 |
48
|
oveq2d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( A ^c ( C - j ) ) = ( A ^c ( C - k ) ) ) |
| 50 |
46
|
oveq2d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( B ^ j ) = ( B ^ k ) ) |
| 51 |
49 50
|
oveq12d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) = ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) |
| 52 |
47 51
|
oveq12d |
|- ( ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) /\ j = k ) -> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) = ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 53 |
4
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> C e. CC ) |
| 54 |
53 19
|
bcccl |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
| 55 |
5
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> A e. CC ) |
| 56 |
19
|
nn0cnd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
| 57 |
53 56
|
subcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( C - k ) e. CC ) |
| 58 |
55 57
|
cxpcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( A ^c ( C - k ) ) e. CC ) |
| 59 |
6
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> B e. CC ) |
| 60 |
59 19
|
expcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
| 61 |
58 60
|
mulcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) e. CC ) |
| 62 |
54 61
|
mulcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 63 |
45 52 19 62
|
fvmptd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) = ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 64 |
|
peano2nn0 |
|- ( C e. NN0 -> ( C + 1 ) e. NN0 ) |
| 65 |
64
|
adantl |
|- ( ( ph /\ C e. NN0 ) -> ( C + 1 ) e. NN0 ) |
| 66 |
|
c0ex |
|- 0 e. _V |
| 67 |
66
|
fconst |
|- ( NN0 X. { 0 } ) : NN0 --> { 0 } |
| 68 |
67
|
a1i |
|- ( ( ph /\ C e. NN0 ) -> ( NN0 X. { 0 } ) : NN0 --> { 0 } ) |
| 69 |
|
0red |
|- ( ( ph /\ C e. NN0 ) -> 0 e. RR ) |
| 70 |
69
|
snssd |
|- ( ( ph /\ C e. NN0 ) -> { 0 } C_ RR ) |
| 71 |
68 70
|
fssd |
|- ( ( ph /\ C e. NN0 ) -> ( NN0 X. { 0 } ) : NN0 --> RR ) |
| 72 |
71
|
ffvelcdmda |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( NN0 X. { 0 } ) ` k ) e. RR ) |
| 73 |
63 62
|
eqeltrd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) e. CC ) |
| 74 |
|
climrel |
|- Rel ~~> |
| 75 |
40
|
xpeq1i |
|- ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
| 76 |
|
seqeq3 |
|- ( ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) -> seq 0 ( + , ( NN0 X. { 0 } ) ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ) |
| 77 |
75 76
|
ax-mp |
|- seq 0 ( + , ( NN0 X. { 0 } ) ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) |
| 78 |
|
0z |
|- 0 e. ZZ |
| 79 |
|
serclim0 |
|- ( 0 e. ZZ -> seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 ) |
| 80 |
78 79
|
ax-mp |
|- seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 |
| 81 |
77 80
|
eqbrtri |
|- seq 0 ( + , ( NN0 X. { 0 } ) ) ~~> 0 |
| 82 |
|
releldm |
|- ( ( Rel ~~> /\ seq 0 ( + , ( NN0 X. { 0 } ) ) ~~> 0 ) -> seq 0 ( + , ( NN0 X. { 0 } ) ) e. dom ~~> ) |
| 83 |
74 81 82
|
mp2an |
|- seq 0 ( + , ( NN0 X. { 0 } ) ) e. dom ~~> |
| 84 |
83
|
a1i |
|- ( ( ph /\ C e. NN0 ) -> seq 0 ( + , ( NN0 X. { 0 } ) ) e. dom ~~> ) |
| 85 |
|
eluznn0 |
|- ( ( ( C + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> k e. NN0 ) |
| 86 |
65 85
|
sylan |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> k e. NN0 ) |
| 87 |
86 63
|
syldan |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) = ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 88 |
|
0zd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> 0 e. ZZ ) |
| 89 |
86
|
nn0zd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> k e. ZZ ) |
| 90 |
|
1zzd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> 1 e. ZZ ) |
| 91 |
89 90
|
zsubcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( k - 1 ) e. ZZ ) |
| 92 |
14
|
nn0zd |
|- ( ( ph /\ C e. NN0 ) -> C e. ZZ ) |
| 93 |
92
|
adantr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> C e. ZZ ) |
| 94 |
14
|
nn0ge0d |
|- ( ( ph /\ C e. NN0 ) -> 0 <_ C ) |
| 95 |
94
|
adantr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> 0 <_ C ) |
| 96 |
|
eluzle |
|- ( k e. ( ZZ>= ` ( C + 1 ) ) -> ( C + 1 ) <_ k ) |
| 97 |
96
|
adantl |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( C + 1 ) <_ k ) |
| 98 |
93
|
zred |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> C e. RR ) |
| 99 |
|
1red |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> 1 e. RR ) |
| 100 |
86
|
nn0red |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> k e. RR ) |
| 101 |
|
leaddsub |
|- ( ( C e. RR /\ 1 e. RR /\ k e. RR ) -> ( ( C + 1 ) <_ k <-> C <_ ( k - 1 ) ) ) |
| 102 |
98 99 100 101
|
syl3anc |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( C + 1 ) <_ k <-> C <_ ( k - 1 ) ) ) |
| 103 |
97 102
|
mpbid |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> C <_ ( k - 1 ) ) |
| 104 |
88 91 93 95 103
|
elfzd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> C e. ( 0 ... ( k - 1 ) ) ) |
| 105 |
4
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> C e. CC ) |
| 106 |
105 86
|
bcc0 |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( C _Cc k ) = 0 <-> C e. ( 0 ... ( k - 1 ) ) ) ) |
| 107 |
104 106
|
mpbird |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( C _Cc k ) = 0 ) |
| 108 |
107
|
oveq1d |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = ( 0 x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 109 |
5
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> A e. CC ) |
| 110 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` ( C + 1 ) ) -> k e. CC ) |
| 111 |
110
|
adantl |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> k e. CC ) |
| 112 |
105 111
|
subcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( C - k ) e. CC ) |
| 113 |
109 112
|
cxpcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( A ^c ( C - k ) ) e. CC ) |
| 114 |
6
|
ad2antrr |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> B e. CC ) |
| 115 |
114 86
|
expcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( B ^ k ) e. CC ) |
| 116 |
113 115
|
mulcld |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) e. CC ) |
| 117 |
116
|
mul02d |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( 0 x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 118 |
108 117
|
eqtrd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 119 |
87 118
|
eqtrd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) = 0 ) |
| 120 |
119
|
abs00bd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) = 0 ) |
| 121 |
|
0re |
|- 0 e. RR |
| 122 |
120 121
|
eqeltrdi |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) e. RR ) |
| 123 |
|
eqle |
|- ( ( ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) e. RR /\ ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) = 0 ) -> ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) <_ 0 ) |
| 124 |
122 120 123
|
syl2anc |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) <_ 0 ) |
| 125 |
72
|
recnd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. NN0 ) -> ( ( NN0 X. { 0 } ) ` k ) e. CC ) |
| 126 |
86 125
|
syldan |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( ( NN0 X. { 0 } ) ` k ) e. CC ) |
| 127 |
126
|
mul02d |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( 0 x. ( ( NN0 X. { 0 } ) ` k ) ) = 0 ) |
| 128 |
124 127
|
breqtrrd |
|- ( ( ( ph /\ C e. NN0 ) /\ k e. ( ZZ>= ` ( C + 1 ) ) ) -> ( abs ` ( ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ` k ) ) <_ ( 0 x. ( ( NN0 X. { 0 } ) ` k ) ) ) |
| 129 |
40 65 72 73 84 69 128
|
cvgcmpce |
|- ( ( ph /\ C e. NN0 ) -> seq 0 ( + , ( j e. NN0 |-> ( ( C _Cc j ) x. ( ( A ^c ( C - j ) ) x. ( B ^ j ) ) ) ) ) e. dom ~~> ) |
| 130 |
40 41 44 63 62 129
|
isumsplit |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... ( ( C + 1 ) - 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) ) |
| 131 |
|
1cnd |
|- ( ( ph /\ C e. NN0 ) -> 1 e. CC ) |
| 132 |
36 131
|
pncand |
|- ( ( ph /\ C e. NN0 ) -> ( ( C + 1 ) - 1 ) = C ) |
| 133 |
132
|
oveq2d |
|- ( ( ph /\ C e. NN0 ) -> ( 0 ... ( ( C + 1 ) - 1 ) ) = ( 0 ... C ) ) |
| 134 |
133
|
sumeq1d |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. ( 0 ... ( ( C + 1 ) - 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
| 135 |
134
|
oveq1d |
|- ( ( ph /\ C e. NN0 ) -> ( sum_ k e. ( 0 ... ( ( C + 1 ) - 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) = ( sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) ) |
| 136 |
118
|
sumeq2dv |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( ZZ>= ` ( C + 1 ) ) 0 ) |
| 137 |
|
ssid |
|- ( ZZ>= ` ( C + 1 ) ) C_ ( ZZ>= ` ( C + 1 ) ) |
| 138 |
137
|
orci |
|- ( ( ZZ>= ` ( C + 1 ) ) C_ ( ZZ>= ` ( C + 1 ) ) \/ ( ZZ>= ` ( C + 1 ) ) e. Fin ) |
| 139 |
|
sumz |
|- ( ( ( ZZ>= ` ( C + 1 ) ) C_ ( ZZ>= ` ( C + 1 ) ) \/ ( ZZ>= ` ( C + 1 ) ) e. Fin ) -> sum_ k e. ( ZZ>= ` ( C + 1 ) ) 0 = 0 ) |
| 140 |
138 139
|
ax-mp |
|- sum_ k e. ( ZZ>= ` ( C + 1 ) ) 0 = 0 |
| 141 |
136 140
|
eqtrdi |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 142 |
141
|
oveq2d |
|- ( ( ph /\ C e. NN0 ) -> ( sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( ZZ>= ` ( C + 1 ) ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) = ( sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + 0 ) ) |
| 143 |
130 135 142
|
3eqtrd |
|- ( ( ph /\ C e. NN0 ) -> sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... C ) ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) + 0 ) ) |
| 144 |
39 143 35
|
3eqtr4rd |
|- ( ( ph /\ C e. NN0 ) -> ( ( A + B ) ^c C ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |