Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
5 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
6 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
7 |
|
peano2cn |
|- ( C e. CC -> ( C + 1 ) e. CC ) |
8 |
4 7
|
syl |
|- ( ph -> ( C + 1 ) e. CC ) |
9 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
10 |
|
nn0ex |
|- NN0 e. _V |
11 |
10
|
mptex |
|- ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) e. _V |
12 |
11
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) e. _V ) |
13 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ) |
14 |
|
simpr |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> k = x ) |
15 |
14
|
oveq1d |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> ( k + 1 ) = ( x + 1 ) ) |
16 |
15
|
oveq2d |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> ( ( C + 1 ) / ( k + 1 ) ) = ( ( C + 1 ) / ( x + 1 ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ x e. NN0 ) -> x e. NN0 ) |
18 |
|
ovexd |
|- ( ( ph /\ x e. NN0 ) -> ( ( C + 1 ) / ( x + 1 ) ) e. _V ) |
19 |
13 16 17 18
|
fvmptd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ` x ) = ( ( C + 1 ) / ( x + 1 ) ) ) |
20 |
5 6 8 9 12 19
|
divcnvshft |
|- ( ph -> ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ~~> 0 ) |
21 |
|
ovexd |
|- ( ph -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) oF - ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) e. _V ) |
22 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
23 |
|
1cnd |
|- ( k e. NN0 -> 1 e. CC ) |
24 |
22 23
|
addcld |
|- ( k e. NN0 -> ( k + 1 ) e. CC ) |
25 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
26 |
25
|
nnne0d |
|- ( k e. NN0 -> ( k + 1 ) =/= 0 ) |
27 |
24 26
|
dividd |
|- ( k e. NN0 -> ( ( k + 1 ) / ( k + 1 ) ) = 1 ) |
28 |
27
|
mpteq2ia |
|- ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> 1 ) |
29 |
|
fconstmpt |
|- ( NN0 X. { 1 } ) = ( k e. NN0 |-> 1 ) |
30 |
28 29
|
eqtr4i |
|- ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) = ( NN0 X. { 1 } ) |
31 |
|
ax-1cn |
|- 1 e. CC |
32 |
|
0z |
|- 0 e. ZZ |
33 |
5
|
eqimss2i |
|- ( ZZ>= ` 0 ) C_ NN0 |
34 |
33 10
|
climconst2 |
|- ( ( 1 e. CC /\ 0 e. ZZ ) -> ( NN0 X. { 1 } ) ~~> 1 ) |
35 |
31 32 34
|
mp2an |
|- ( NN0 X. { 1 } ) ~~> 1 |
36 |
30 35
|
eqbrtri |
|- ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ~~> 1 |
37 |
36
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ~~> 1 ) |
38 |
4
|
adantr |
|- ( ( ph /\ x e. NN0 ) -> C e. CC ) |
39 |
|
1cnd |
|- ( ( ph /\ x e. NN0 ) -> 1 e. CC ) |
40 |
38 39
|
addcld |
|- ( ( ph /\ x e. NN0 ) -> ( C + 1 ) e. CC ) |
41 |
17
|
nn0cnd |
|- ( ( ph /\ x e. NN0 ) -> x e. CC ) |
42 |
41 39
|
addcld |
|- ( ( ph /\ x e. NN0 ) -> ( x + 1 ) e. CC ) |
43 |
|
nn0p1nn |
|- ( x e. NN0 -> ( x + 1 ) e. NN ) |
44 |
43
|
nnne0d |
|- ( x e. NN0 -> ( x + 1 ) =/= 0 ) |
45 |
44
|
adantl |
|- ( ( ph /\ x e. NN0 ) -> ( x + 1 ) =/= 0 ) |
46 |
40 42 45
|
divcld |
|- ( ( ph /\ x e. NN0 ) -> ( ( C + 1 ) / ( x + 1 ) ) e. CC ) |
47 |
19 46
|
eqeltrd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ` x ) e. CC ) |
48 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) |
49 |
15 15
|
oveq12d |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> ( ( k + 1 ) / ( k + 1 ) ) = ( ( x + 1 ) / ( x + 1 ) ) ) |
50 |
|
ovexd |
|- ( ( ph /\ x e. NN0 ) -> ( ( x + 1 ) / ( x + 1 ) ) e. _V ) |
51 |
48 49 17 50
|
fvmptd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ` x ) = ( ( x + 1 ) / ( x + 1 ) ) ) |
52 |
42 42 45
|
divcld |
|- ( ( ph /\ x e. NN0 ) -> ( ( x + 1 ) / ( x + 1 ) ) e. CC ) |
53 |
51 52
|
eqeltrd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ` x ) e. CC ) |
54 |
|
ovex |
|- ( ( C + 1 ) / ( k + 1 ) ) e. _V |
55 |
|
eqid |
|- ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) |
56 |
54 55
|
fnmpti |
|- ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) Fn NN0 |
57 |
56
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) Fn NN0 ) |
58 |
|
ovex |
|- ( ( k + 1 ) / ( k + 1 ) ) e. _V |
59 |
|
eqid |
|- ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) |
60 |
58 59
|
fnmpti |
|- ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) Fn NN0 |
61 |
60
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) Fn NN0 ) |
62 |
10
|
a1i |
|- ( ph -> NN0 e. _V ) |
63 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
64 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ` x ) = ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ` x ) ) |
65 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ` x ) = ( ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ` x ) ) |
66 |
57 61 62 62 63 64 65
|
ofval |
|- ( ( ph /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) oF - ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) ` x ) = ( ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ` x ) - ( ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ` x ) ) ) |
67 |
5 6 20 21 37 47 53 66
|
climsub |
|- ( ph -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) oF - ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) ~~> ( 0 - 1 ) ) |
68 |
|
ovexd |
|- ( ( ph /\ k e. NN0 ) -> ( ( C + 1 ) / ( k + 1 ) ) e. _V ) |
69 |
|
ovexd |
|- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) / ( k + 1 ) ) e. _V ) |
70 |
|
eqidd |
|- ( ph -> ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) ) |
71 |
|
eqidd |
|- ( ph -> ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) |
72 |
62 68 69 70 71
|
offval2 |
|- ( ph -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) oF - ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) = ( k e. NN0 |-> ( ( ( C + 1 ) / ( k + 1 ) ) - ( ( k + 1 ) / ( k + 1 ) ) ) ) ) |
73 |
8
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( C + 1 ) e. CC ) |
74 |
24
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
75 |
26
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) =/= 0 ) |
76 |
73 74 74 75
|
divsubdird |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( C + 1 ) - ( k + 1 ) ) / ( k + 1 ) ) = ( ( ( C + 1 ) / ( k + 1 ) ) - ( ( k + 1 ) / ( k + 1 ) ) ) ) |
77 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
78 |
22
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> k e. CC ) |
79 |
|
1cnd |
|- ( ( ph /\ k e. NN0 ) -> 1 e. CC ) |
80 |
77 78 79
|
pnpcan2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( C + 1 ) - ( k + 1 ) ) = ( C - k ) ) |
81 |
80
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( C + 1 ) - ( k + 1 ) ) / ( k + 1 ) ) = ( ( C - k ) / ( k + 1 ) ) ) |
82 |
76 81
|
eqtr3d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( C + 1 ) / ( k + 1 ) ) - ( ( k + 1 ) / ( k + 1 ) ) ) = ( ( C - k ) / ( k + 1 ) ) ) |
83 |
82
|
mpteq2dva |
|- ( ph -> ( k e. NN0 |-> ( ( ( C + 1 ) / ( k + 1 ) ) - ( ( k + 1 ) / ( k + 1 ) ) ) ) = ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ) |
84 |
72 83
|
eqtrd |
|- ( ph -> ( ( k e. NN0 |-> ( ( C + 1 ) / ( k + 1 ) ) ) oF - ( k e. NN0 |-> ( ( k + 1 ) / ( k + 1 ) ) ) ) = ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ) |
85 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
86 |
85
|
eqcomi |
|- ( 0 - 1 ) = -u 1 |
87 |
86
|
a1i |
|- ( ph -> ( 0 - 1 ) = -u 1 ) |
88 |
67 84 87
|
3brtr3d |
|- ( ph -> ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ~~> -u 1 ) |
89 |
10
|
mptex |
|- ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) e. _V |
90 |
89
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) e. _V ) |
91 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) = ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ) |
92 |
|
oveq2 |
|- ( k = x -> ( C - k ) = ( C - x ) ) |
93 |
|
oveq1 |
|- ( k = x -> ( k + 1 ) = ( x + 1 ) ) |
94 |
92 93
|
oveq12d |
|- ( k = x -> ( ( C - k ) / ( k + 1 ) ) = ( ( C - x ) / ( x + 1 ) ) ) |
95 |
94
|
adantl |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> ( ( C - k ) / ( k + 1 ) ) = ( ( C - x ) / ( x + 1 ) ) ) |
96 |
|
ovexd |
|- ( ( ph /\ x e. NN0 ) -> ( ( C - x ) / ( x + 1 ) ) e. _V ) |
97 |
91 95 17 96
|
fvmptd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ` x ) = ( ( C - x ) / ( x + 1 ) ) ) |
98 |
38 41
|
subcld |
|- ( ( ph /\ x e. NN0 ) -> ( C - x ) e. CC ) |
99 |
98 42 45
|
divcld |
|- ( ( ph /\ x e. NN0 ) -> ( ( C - x ) / ( x + 1 ) ) e. CC ) |
100 |
97 99
|
eqeltrd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ` x ) e. CC ) |
101 |
|
eqidd |
|- ( ( ph /\ x e. NN0 ) -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) = ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ) |
102 |
94
|
fveq2d |
|- ( k = x -> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) = ( abs ` ( ( C - x ) / ( x + 1 ) ) ) ) |
103 |
102
|
adantl |
|- ( ( ( ph /\ x e. NN0 ) /\ k = x ) -> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) = ( abs ` ( ( C - x ) / ( x + 1 ) ) ) ) |
104 |
|
fvexd |
|- ( ( ph /\ x e. NN0 ) -> ( abs ` ( ( C - x ) / ( x + 1 ) ) ) e. _V ) |
105 |
101 103 17 104
|
fvmptd |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ` x ) = ( abs ` ( ( C - x ) / ( x + 1 ) ) ) ) |
106 |
97
|
fveq2d |
|- ( ( ph /\ x e. NN0 ) -> ( abs ` ( ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ` x ) ) = ( abs ` ( ( C - x ) / ( x + 1 ) ) ) ) |
107 |
105 106
|
eqtr4d |
|- ( ( ph /\ x e. NN0 ) -> ( ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ` x ) = ( abs ` ( ( k e. NN0 |-> ( ( C - k ) / ( k + 1 ) ) ) ` x ) ) ) |
108 |
5 88 90 6 100 107
|
climabs |
|- ( ph -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ~~> ( abs ` -u 1 ) ) |
109 |
31
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
110 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
111 |
109 110
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
112 |
108 111
|
breqtrdi |
|- ( ph -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ~~> 1 ) |