| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
| 2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
| 3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
| 4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
| 5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
| 7 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 8 |
6 7
|
bccp1k |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc ( k + 1 ) ) = ( ( C _Cc k ) x. ( ( C - k ) / ( k + 1 ) ) ) ) |
| 9 |
5
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
| 10 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ j = ( k + 1 ) ) -> j = ( k + 1 ) ) |
| 11 |
10
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j = ( k + 1 ) ) -> ( C _Cc j ) = ( C _Cc ( k + 1 ) ) ) |
| 12 |
|
1nn0 |
|- 1 e. NN0 |
| 13 |
12
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> 1 e. NN0 ) |
| 14 |
7 13
|
nn0addcld |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
| 15 |
|
ovexd |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc ( k + 1 ) ) e. _V ) |
| 16 |
9 11 14 15
|
fvmptd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) = ( C _Cc ( k + 1 ) ) ) |
| 17 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) |
| 18 |
17
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( C _Cc j ) = ( C _Cc k ) ) |
| 19 |
|
ovexd |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. _V ) |
| 20 |
9 18 7 19
|
fvmptd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
| 21 |
20
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) = ( ( C _Cc k ) x. ( ( C - k ) / ( k + 1 ) ) ) ) |
| 22 |
8 16 21
|
3eqtr4d |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) = ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) ) |
| 23 |
22
|
adantlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) = ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) ) |
| 24 |
23
|
eqcomd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 25 |
6 7
|
bcccl |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
| 26 |
20 25
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 27 |
26
|
adantlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 28 |
6
|
adantlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> C e. CC ) |
| 29 |
|
simpr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
| 30 |
29
|
nn0cnd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
| 31 |
28 30
|
subcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( C - k ) e. CC ) |
| 32 |
|
1cnd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> 1 e. CC ) |
| 33 |
30 32
|
addcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
| 34 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
| 35 |
34
|
nnne0d |
|- ( k e. NN0 -> ( k + 1 ) =/= 0 ) |
| 36 |
35
|
adantl |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( k + 1 ) =/= 0 ) |
| 37 |
31 33 36
|
divcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C - k ) / ( k + 1 ) ) e. CC ) |
| 38 |
27 37
|
mulcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) e. CC ) |
| 39 |
23 38
|
eqeltrd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. CC ) |
| 40 |
20
|
adantlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
| 41 |
|
elfznn0 |
|- ( C e. ( 0 ... ( k - 1 ) ) -> C e. NN0 ) |
| 42 |
41
|
con3i |
|- ( -. C e. NN0 -> -. C e. ( 0 ... ( k - 1 ) ) ) |
| 43 |
42
|
ad2antlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> -. C e. ( 0 ... ( k - 1 ) ) ) |
| 44 |
28 29
|
bcc0 |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) = 0 <-> C e. ( 0 ... ( k - 1 ) ) ) ) |
| 45 |
44
|
necon3abid |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) =/= 0 <-> -. C e. ( 0 ... ( k - 1 ) ) ) ) |
| 46 |
43 45
|
mpbird |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( C _Cc k ) =/= 0 ) |
| 47 |
40 46
|
eqnetrd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) =/= 0 ) |
| 48 |
39 27 37 47
|
divmuld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) / ( F ` k ) ) = ( ( C - k ) / ( k + 1 ) ) <-> ( ( F ` k ) x. ( ( C - k ) / ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) ) |
| 49 |
24 48
|
mpbird |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) = ( ( C - k ) / ( k + 1 ) ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) = ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) |
| 51 |
50
|
mpteq2dva |
|- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) = ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ) |
| 52 |
1 2 3 4
|
binomcxplemrat |
|- ( ph -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ~~> 1 ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( abs ` ( ( C - k ) / ( k + 1 ) ) ) ) ~~> 1 ) |
| 54 |
51 53
|
eqbrtrd |
|- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) ~~> 1 ) |