Metamath Proof Explorer


Theorem binomcxplemfrat

Description: Lemma for binomcxp . binomcxplemrat implies that when C is not a nonnegative integer, the absolute value of the ratio ( ( F( k + 1 ) ) / ( Fk ) ) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a ( 𝜑𝐴 ∈ ℝ+ )
binomcxp.b ( 𝜑𝐵 ∈ ℝ )
binomcxp.lt ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) )
binomcxp.c ( 𝜑𝐶 ∈ ℂ )
binomcxplem.f 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) )
Assertion binomcxplemfrat ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) ) ) ⇝ 1 )

Proof

Step Hyp Ref Expression
1 binomcxp.a ( 𝜑𝐴 ∈ ℝ+ )
2 binomcxp.b ( 𝜑𝐵 ∈ ℝ )
3 binomcxp.lt ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) )
4 binomcxp.c ( 𝜑𝐶 ∈ ℂ )
5 binomcxplem.f 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) )
6 4 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ )
7 simpr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
8 6 7 bccp1k ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( 𝑘 + 1 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) )
9 5 a1i ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) )
10 simpr ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝑗 = ( 𝑘 + 1 ) )
11 10 oveq2d ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( 𝑘 + 1 ) ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 ( 𝑘 + 1 ) ) )
12 1nn0 1 ∈ ℕ0
13 12 a1i ( ( 𝜑𝑘 ∈ ℕ0 ) → 1 ∈ ℕ0 )
14 7 13 nn0addcld ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 )
15 ovexd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( 𝑘 + 1 ) ) ∈ V )
16 9 11 14 15 fvmptd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐶 C𝑐 ( 𝑘 + 1 ) ) )
17 simpr ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 )
18 17 oveq2d ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 𝑘 ) )
19 ovexd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ V )
20 9 18 7 19 fvmptd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) = ( 𝐶 C𝑐 𝑘 ) )
21 20 oveq1d ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) )
22 8 16 21 3eqtr4d ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) )
23 22 adantlr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) )
24 23 eqcomd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
25 6 7 bcccl ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ )
26 20 25 eqeltrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ∈ ℂ )
27 26 adantlr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ∈ ℂ )
28 6 adantlr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ )
29 simpr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
30 29 nn0cnd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ )
31 28 30 subcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶𝑘 ) ∈ ℂ )
32 1cnd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ )
33 30 32 addcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ )
34 nn0p1nn ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ )
35 34 nnne0d ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ≠ 0 )
36 35 adantl ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ≠ 0 )
37 31 33 36 divcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ∈ ℂ )
38 27 37 mulcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) ∈ ℂ )
39 23 38 eqeltrd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℂ )
40 20 adantlr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) = ( 𝐶 C𝑐 𝑘 ) )
41 elfznn0 ( 𝐶 ∈ ( 0 ... ( 𝑘 − 1 ) ) → 𝐶 ∈ ℕ0 )
42 41 con3i ( ¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ ( 0 ... ( 𝑘 − 1 ) ) )
43 42 ad2antlr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 𝐶 ∈ ( 0 ... ( 𝑘 − 1 ) ) )
44 28 29 bcc0 ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) = 0 ↔ 𝐶 ∈ ( 0 ... ( 𝑘 − 1 ) ) ) )
45 44 necon3abid ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) ≠ 0 ↔ ¬ 𝐶 ∈ ( 0 ... ( 𝑘 − 1 ) ) ) )
46 43 45 mpbird ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ≠ 0 )
47 40 46 eqnetrd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ≠ 0 )
48 39 27 37 47 divmuld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) = ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ↔ ( ( 𝐹𝑘 ) · ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
49 24 48 mpbird ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) = ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) )
50 49 fveq2d ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) ) = ( abs ‘ ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) )
51 50 mpteq2dva ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) ) )
52 1 2 3 4 binomcxplemrat ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) ) ⇝ 1 )
53 52 adantr ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶𝑘 ) / ( 𝑘 + 1 ) ) ) ) ⇝ 1 )
54 51 53 eqbrtrd ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) / ( 𝐹𝑘 ) ) ) ) ⇝ 1 )