Metamath Proof Explorer


Theorem binomcxplemfrat

Description: Lemma for binomcxp . binomcxplemrat implies that when C is not a nonnegative integer, the absolute value of the ratio ( ( F( k + 1 ) ) / ( Fk ) ) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
binomcxplem.f F = j 0 C C 𝑐 j
Assertion binomcxplemfrat φ ¬ C 0 k 0 F k + 1 F k 1

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 binomcxplem.f F = j 0 C C 𝑐 j
6 4 adantr φ k 0 C
7 simpr φ k 0 k 0
8 6 7 bccp1k φ k 0 C C 𝑐 k + 1 = C C 𝑐 k C k k + 1
9 5 a1i φ k 0 F = j 0 C C 𝑐 j
10 simpr φ k 0 j = k + 1 j = k + 1
11 10 oveq2d φ k 0 j = k + 1 C C 𝑐 j = C C 𝑐 k + 1
12 1nn0 1 0
13 12 a1i φ k 0 1 0
14 7 13 nn0addcld φ k 0 k + 1 0
15 ovexd φ k 0 C C 𝑐 k + 1 V
16 9 11 14 15 fvmptd φ k 0 F k + 1 = C C 𝑐 k + 1
17 simpr φ k 0 j = k j = k
18 17 oveq2d φ k 0 j = k C C 𝑐 j = C C 𝑐 k
19 ovexd φ k 0 C C 𝑐 k V
20 9 18 7 19 fvmptd φ k 0 F k = C C 𝑐 k
21 20 oveq1d φ k 0 F k C k k + 1 = C C 𝑐 k C k k + 1
22 8 16 21 3eqtr4d φ k 0 F k + 1 = F k C k k + 1
23 22 adantlr φ ¬ C 0 k 0 F k + 1 = F k C k k + 1
24 23 eqcomd φ ¬ C 0 k 0 F k C k k + 1 = F k + 1
25 6 7 bcccl φ k 0 C C 𝑐 k
26 20 25 eqeltrd φ k 0 F k
27 26 adantlr φ ¬ C 0 k 0 F k
28 6 adantlr φ ¬ C 0 k 0 C
29 simpr φ ¬ C 0 k 0 k 0
30 29 nn0cnd φ ¬ C 0 k 0 k
31 28 30 subcld φ ¬ C 0 k 0 C k
32 1cnd φ ¬ C 0 k 0 1
33 30 32 addcld φ ¬ C 0 k 0 k + 1
34 nn0p1nn k 0 k + 1
35 34 nnne0d k 0 k + 1 0
36 35 adantl φ ¬ C 0 k 0 k + 1 0
37 31 33 36 divcld φ ¬ C 0 k 0 C k k + 1
38 27 37 mulcld φ ¬ C 0 k 0 F k C k k + 1
39 23 38 eqeltrd φ ¬ C 0 k 0 F k + 1
40 20 adantlr φ ¬ C 0 k 0 F k = C C 𝑐 k
41 elfznn0 C 0 k 1 C 0
42 41 con3i ¬ C 0 ¬ C 0 k 1
43 42 ad2antlr φ ¬ C 0 k 0 ¬ C 0 k 1
44 28 29 bcc0 φ ¬ C 0 k 0 C C 𝑐 k = 0 C 0 k 1
45 44 necon3abid φ ¬ C 0 k 0 C C 𝑐 k 0 ¬ C 0 k 1
46 43 45 mpbird φ ¬ C 0 k 0 C C 𝑐 k 0
47 40 46 eqnetrd φ ¬ C 0 k 0 F k 0
48 39 27 37 47 divmuld φ ¬ C 0 k 0 F k + 1 F k = C k k + 1 F k C k k + 1 = F k + 1
49 24 48 mpbird φ ¬ C 0 k 0 F k + 1 F k = C k k + 1
50 49 fveq2d φ ¬ C 0 k 0 F k + 1 F k = C k k + 1
51 50 mpteq2dva φ ¬ C 0 k 0 F k + 1 F k = k 0 C k k + 1
52 1 2 3 4 binomcxplemrat φ k 0 C k k + 1 1
53 52 adantr φ ¬ C 0 k 0 C k k + 1 1
54 51 53 eqbrtrd φ ¬ C 0 k 0 F k + 1 F k 1