Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
binomcxplem.f |
|
6 |
4
|
adantr |
|
7 |
|
simpr |
|
8 |
6 7
|
bccp1k |
|
9 |
5
|
a1i |
|
10 |
|
simpr |
|
11 |
10
|
oveq2d |
|
12 |
|
1nn0 |
|
13 |
12
|
a1i |
|
14 |
7 13
|
nn0addcld |
|
15 |
|
ovexd |
|
16 |
9 11 14 15
|
fvmptd |
|
17 |
|
simpr |
|
18 |
17
|
oveq2d |
|
19 |
|
ovexd |
|
20 |
9 18 7 19
|
fvmptd |
|
21 |
20
|
oveq1d |
|
22 |
8 16 21
|
3eqtr4d |
|
23 |
22
|
adantlr |
|
24 |
23
|
eqcomd |
|
25 |
6 7
|
bcccl |
|
26 |
20 25
|
eqeltrd |
|
27 |
26
|
adantlr |
|
28 |
6
|
adantlr |
|
29 |
|
simpr |
|
30 |
29
|
nn0cnd |
|
31 |
28 30
|
subcld |
|
32 |
|
1cnd |
|
33 |
30 32
|
addcld |
|
34 |
|
nn0p1nn |
|
35 |
34
|
nnne0d |
|
36 |
35
|
adantl |
|
37 |
31 33 36
|
divcld |
|
38 |
27 37
|
mulcld |
|
39 |
23 38
|
eqeltrd |
|
40 |
20
|
adantlr |
|
41 |
|
elfznn0 |
|
42 |
41
|
con3i |
|
43 |
42
|
ad2antlr |
|
44 |
28 29
|
bcc0 |
|
45 |
44
|
necon3abid |
|
46 |
43 45
|
mpbird |
|
47 |
40 46
|
eqnetrd |
|
48 |
39 27 37 47
|
divmuld |
|
49 |
24 48
|
mpbird |
|
50 |
49
|
fveq2d |
|
51 |
50
|
mpteq2dva |
|
52 |
1 2 3 4
|
binomcxplemrat |
|
53 |
52
|
adantr |
|
54 |
51 53
|
eqbrtrd |
|