Description: Generalize the binomial theorem binom to positive real summand A , real summand B , and complex exponent C . Proof in https://en.wikibooks.org/wiki/Advanced_Calculus ; see also https://en.wikipedia.org/wiki/Binomial_series , https://en.wikipedia.org/wiki/Binomial_theorem (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem . (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | binomcxp.a | |
|
binomcxp.b | |
||
binomcxp.lt | |
||
binomcxp.c | |
||
Assertion | binomcxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | |
|
2 | binomcxp.b | |
|
3 | binomcxp.lt | |
|
4 | binomcxp.c | |
|
5 | 1 2 3 4 | binomcxplemnn0 | |
6 | eqid | |
|
7 | fveq2 | |
|
8 | oveq2 | |
|
9 | 7 8 | oveq12d | |
10 | 9 | cbvmptv | |
11 | 10 | mpteq2i | |
12 | eqid | |
|
13 | id | |
|
14 | oveq2 | |
|
15 | 14 | cbvmptv | |
16 | 15 | a1i | |
17 | 16 13 | fveq12d | |
18 | 13 17 | oveq12d | |
19 | oveq1 | |
|
20 | 19 | oveq2d | |
21 | 18 20 | oveq12d | |
22 | 21 | cbvmptv | |
23 | 22 | mpteq2i | |
24 | oveq2 | |
|
25 | 24 | cbvmptv | |
26 | 25 | fveq1i | |
27 | 26 | oveq1i | |
28 | 27 | mpteq2i | |
29 | 28 | mpteq2i | |
30 | 29 | fveq1i | |
31 | seqeq3 | |
|
32 | 30 31 | ax-mp | |
33 | 32 | eleq1i | |
34 | 33 | rabbii | |
35 | 34 | supeq1i | |
36 | 35 | oveq2i | |
37 | 36 | imaeq2i | |
38 | eqid | |
|
39 | 1 2 3 4 6 11 12 23 37 38 | binomcxplemnotnn0 | |
40 | 5 39 | pm2.61dan | |