Metamath Proof Explorer


Theorem binomcxp

Description: Generalize the binomial theorem binom to positive real summand A , real summand B , and complex exponent C . Proof in https://en.wikibooks.org/wiki/Advanced_Calculus ; see also https://en.wikipedia.org/wiki/Binomial_series , https://en.wikipedia.org/wiki/Binomial_theorem (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
Assertion binomcxp φA+BC=k0CC𝑐kACkBk

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 1 2 3 4 binomcxplemnn0 φC0A+BC=k0CC𝑐kACkBk
6 eqid j0CC𝑐j=j0CC𝑐j
7 fveq2 x=kj0CC𝑐jx=j0CC𝑐jk
8 oveq2 x=kbx=bk
9 7 8 oveq12d x=kj0CC𝑐jxbx=j0CC𝑐jkbk
10 9 cbvmptv x0j0CC𝑐jxbx=k0j0CC𝑐jkbk
11 10 mpteq2i bx0j0CC𝑐jxbx=bk0j0CC𝑐jkbk
12 eqid supr|seq0+bx0j0CC𝑐jxbxrdom*<=supr|seq0+bx0j0CC𝑐jxbxrdom*<
13 id x=kx=k
14 oveq2 y=jCC𝑐y=CC𝑐j
15 14 cbvmptv y0CC𝑐y=j0CC𝑐j
16 15 a1i x=ky0CC𝑐y=j0CC𝑐j
17 16 13 fveq12d x=ky0CC𝑐yx=j0CC𝑐jk
18 13 17 oveq12d x=kxy0CC𝑐yx=kj0CC𝑐jk
19 oveq1 x=kx1=k1
20 19 oveq2d x=kbx1=bk1
21 18 20 oveq12d x=kxy0CC𝑐yxbx1=kj0CC𝑐jkbk1
22 21 cbvmptv xxy0CC𝑐yxbx1=kkj0CC𝑐jkbk1
23 22 mpteq2i bxxy0CC𝑐yxbx1=bkkj0CC𝑐jkbk1
24 oveq2 x=jCC𝑐x=CC𝑐j
25 24 cbvmptv x0CC𝑐x=j0CC𝑐j
26 25 fveq1i x0CC𝑐xx=j0CC𝑐jx
27 26 oveq1i x0CC𝑐xxbx=j0CC𝑐jxbx
28 27 mpteq2i x0x0CC𝑐xxbx=x0j0CC𝑐jxbx
29 28 mpteq2i bx0x0CC𝑐xxbx=bx0j0CC𝑐jxbx
30 29 fveq1i bx0x0CC𝑐xxbxr=bx0j0CC𝑐jxbxr
31 seqeq3 bx0x0CC𝑐xxbxr=bx0j0CC𝑐jxbxrseq0+bx0x0CC𝑐xxbxr=seq0+bx0j0CC𝑐jxbxr
32 30 31 ax-mp seq0+bx0x0CC𝑐xxbxr=seq0+bx0j0CC𝑐jxbxr
33 32 eleq1i seq0+bx0x0CC𝑐xxbxrdomseq0+bx0j0CC𝑐jxbxrdom
34 33 rabbii r|seq0+bx0x0CC𝑐xxbxrdom=r|seq0+bx0j0CC𝑐jxbxrdom
35 34 supeq1i supr|seq0+bx0x0CC𝑐xxbxrdom*<=supr|seq0+bx0j0CC𝑐jxbxrdom*<
36 35 oveq2i 0supr|seq0+bx0x0CC𝑐xxbxrdom*<=0supr|seq0+bx0j0CC𝑐jxbxrdom*<
37 36 imaeq2i abs-10supr|seq0+bx0x0CC𝑐xxbxrdom*<=abs-10supr|seq0+bx0j0CC𝑐jxbxrdom*<
38 eqid babs-10supr|seq0+bx0x0CC𝑐xxbxrdom*<k0bx0j0CC𝑐jxbxbk=babs-10supr|seq0+bx0x0CC𝑐xxbxrdom*<k0bx0j0CC𝑐jxbxbk
39 1 2 3 4 6 11 12 23 37 38 binomcxplemnotnn0 φ¬C0A+BC=k0CC𝑐kACkBk
40 5 39 pm2.61dan φA+BC=k0CC𝑐kACkBk