Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
1 2 3 4
|
binomcxplemnn0 |
|
6 |
|
eqid |
|
7 |
|
fveq2 |
|
8 |
|
oveq2 |
|
9 |
7 8
|
oveq12d |
|
10 |
9
|
cbvmptv |
|
11 |
10
|
mpteq2i |
|
12 |
|
eqid |
|
13 |
|
id |
|
14 |
|
oveq2 |
|
15 |
14
|
cbvmptv |
|
16 |
15
|
a1i |
|
17 |
16 13
|
fveq12d |
|
18 |
13 17
|
oveq12d |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
oveq12d |
|
22 |
21
|
cbvmptv |
|
23 |
22
|
mpteq2i |
|
24 |
|
oveq2 |
|
25 |
24
|
cbvmptv |
|
26 |
25
|
fveq1i |
|
27 |
26
|
oveq1i |
|
28 |
27
|
mpteq2i |
|
29 |
28
|
mpteq2i |
|
30 |
29
|
fveq1i |
|
31 |
|
seqeq3 |
|
32 |
30 31
|
ax-mp |
|
33 |
32
|
eleq1i |
|
34 |
33
|
rabbii |
|
35 |
34
|
supeq1i |
|
36 |
35
|
oveq2i |
|
37 |
36
|
imaeq2i |
|
38 |
|
eqid |
|
39 |
1 2 3 4 6 11 12 23 37 38
|
binomcxplemnotnn0 |
|
40 |
5 39
|
pm2.61dan |
|