Metamath Proof Explorer


Theorem binomcxp

Description: Generalize the binomial theorem binom to positive real summand A , real summand B , and complex exponent C . Proof in https://en.wikibooks.org/wiki/Advanced_Calculus ; see also https://en.wikipedia.org/wiki/Binomial_series , https://en.wikipedia.org/wiki/Binomial_theorem (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
Assertion binomcxp φ A + B C = k 0 C C 𝑐 k A C k B k

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 1 2 3 4 binomcxplemnn0 φ C 0 A + B C = k 0 C C 𝑐 k A C k B k
6 eqid j 0 C C 𝑐 j = j 0 C C 𝑐 j
7 fveq2 x = k j 0 C C 𝑐 j x = j 0 C C 𝑐 j k
8 oveq2 x = k b x = b k
9 7 8 oveq12d x = k j 0 C C 𝑐 j x b x = j 0 C C 𝑐 j k b k
10 9 cbvmptv x 0 j 0 C C 𝑐 j x b x = k 0 j 0 C C 𝑐 j k b k
11 10 mpteq2i b x 0 j 0 C C 𝑐 j x b x = b k 0 j 0 C C 𝑐 j k b k
12 eqid sup r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom * < = sup r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom * <
13 id x = k x = k
14 oveq2 y = j C C 𝑐 y = C C 𝑐 j
15 14 cbvmptv y 0 C C 𝑐 y = j 0 C C 𝑐 j
16 15 a1i x = k y 0 C C 𝑐 y = j 0 C C 𝑐 j
17 16 13 fveq12d x = k y 0 C C 𝑐 y x = j 0 C C 𝑐 j k
18 13 17 oveq12d x = k x y 0 C C 𝑐 y x = k j 0 C C 𝑐 j k
19 oveq1 x = k x 1 = k 1
20 19 oveq2d x = k b x 1 = b k 1
21 18 20 oveq12d x = k x y 0 C C 𝑐 y x b x 1 = k j 0 C C 𝑐 j k b k 1
22 21 cbvmptv x x y 0 C C 𝑐 y x b x 1 = k k j 0 C C 𝑐 j k b k 1
23 22 mpteq2i b x x y 0 C C 𝑐 y x b x 1 = b k k j 0 C C 𝑐 j k b k 1
24 oveq2 x = j C C 𝑐 x = C C 𝑐 j
25 24 cbvmptv x 0 C C 𝑐 x = j 0 C C 𝑐 j
26 25 fveq1i x 0 C C 𝑐 x x = j 0 C C 𝑐 j x
27 26 oveq1i x 0 C C 𝑐 x x b x = j 0 C C 𝑐 j x b x
28 27 mpteq2i x 0 x 0 C C 𝑐 x x b x = x 0 j 0 C C 𝑐 j x b x
29 28 mpteq2i b x 0 x 0 C C 𝑐 x x b x = b x 0 j 0 C C 𝑐 j x b x
30 29 fveq1i b x 0 x 0 C C 𝑐 x x b x r = b x 0 j 0 C C 𝑐 j x b x r
31 seqeq3 b x 0 x 0 C C 𝑐 x x b x r = b x 0 j 0 C C 𝑐 j x b x r seq 0 + b x 0 x 0 C C 𝑐 x x b x r = seq 0 + b x 0 j 0 C C 𝑐 j x b x r
32 30 31 ax-mp seq 0 + b x 0 x 0 C C 𝑐 x x b x r = seq 0 + b x 0 j 0 C C 𝑐 j x b x r
33 32 eleq1i seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom
34 33 rabbii r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom = r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom
35 34 supeq1i sup r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom * < = sup r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom * <
36 35 oveq2i 0 sup r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom * < = 0 sup r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom * <
37 36 imaeq2i abs -1 0 sup r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom * < = abs -1 0 sup r | seq 0 + b x 0 j 0 C C 𝑐 j x b x r dom * <
38 eqid b abs -1 0 sup r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom * < k 0 b x 0 j 0 C C 𝑐 j x b x b k = b abs -1 0 sup r | seq 0 + b x 0 x 0 C C 𝑐 x x b x r dom * < k 0 b x 0 j 0 C C 𝑐 j x b x b k
39 1 2 3 4 6 11 12 23 37 38 binomcxplemnotnn0 φ ¬ C 0 A + B C = k 0 C C 𝑐 k A C k B k
40 5 39 pm2.61dan φ A + B C = k 0 C C 𝑐 k A C k B k