Metamath Proof Explorer


Theorem binomcxplemnotnn0

Description: Lemma for binomcxp . When C is not a nonnegative integer, the generalized sum in binomcxplemnn0 —which we will call P —is a convergent power series: its base b is always of smaller absolute value than the radius of convergence.

pserdv2 gives the derivative of P , which by dvradcnv also converges in that radius. When A is fixed at one, ( A + b ) times that derivative equals ( C x. P ) and fraction ( P / ( ( A + b ) ^c C ) ) is always defined with derivative zero, so the fraction is a constant—specifically one, because ( ( 1 + 0 ) ^c C ) = 1 . Thus ( ( 1 + b ) ^c C ) = ( Pb ) .

Finally, let b be ( B / A ) , and multiply both the binomial ( ( 1 + ( B / A ) ) ^c C ) and the sum ( P( B / A ) ) by ( A ^c C ) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
binomcxplem.f F = j 0 C C 𝑐 j
binomcxplem.s S = b k 0 F k b k
binomcxplem.r R = sup r | seq 0 + S r dom * <
binomcxplem.e E = b k k F k b k 1
binomcxplem.d D = abs -1 0 R
binomcxplem.p P = b D k 0 S b k
Assertion binomcxplemnotnn0 φ ¬ C 0 A + B C = k 0 C C 𝑐 k A C k B k

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 binomcxplem.f F = j 0 C C 𝑐 j
6 binomcxplem.s S = b k 0 F k b k
7 binomcxplem.r R = sup r | seq 0 + S r dom * <
8 binomcxplem.e E = b k k F k b k 1
9 binomcxplem.d D = abs -1 0 R
10 binomcxplem.p P = b D k 0 S b k
11 nfcv _ b abs -1
12 nfcv _ b 0
13 nfcv _ b .
14 nfcv _ b +
15 nfmpt1 _ b b k 0 F k b k
16 6 15 nfcxfr _ b S
17 nfcv _ b r
18 16 17 nffv _ b S r
19 12 14 18 nfseq _ b seq 0 + S r
20 19 nfel1 b seq 0 + S r dom
21 nfcv _ b
22 20 21 nfrabw _ b r | seq 0 + S r dom
23 nfcv _ b *
24 nfcv _ b <
25 22 23 24 nfsup _ b sup r | seq 0 + S r dom * <
26 7 25 nfcxfr _ b R
27 12 13 26 nfov _ b 0 R
28 11 27 nfima _ b abs -1 0 R
29 9 28 nfcxfr _ b D
30 nfcv _ x D
31 nfcv _ x k 0 S b k
32 nfcv _ b 0
33 nfcv _ b x
34 16 33 nffv _ b S x
35 nfcv _ b k
36 34 35 nffv _ b S x k
37 32 36 nfsum _ b k 0 S x k
38 simpl b = x k 0 b = x
39 38 fveq2d b = x k 0 S b = S x
40 39 fveq1d b = x k 0 S b k = S x k
41 40 sumeq2dv b = x k 0 S b k = k 0 S x k
42 29 30 31 37 41 cbvmptf b D k 0 S b k = x D k 0 S x k
43 10 42 eqtri P = x D k 0 S x k
44 43 a1i φ ¬ C 0 P = x D k 0 S x k
45 simplr φ ¬ C 0 x = B A k 0 x = B A
46 45 fveq2d φ ¬ C 0 x = B A k 0 S x = S B A
47 46 fveq1d φ ¬ C 0 x = B A k 0 S x k = S B A k
48 47 sumeq2dv φ ¬ C 0 x = B A k 0 S x k = k 0 S B A k
49 2 recnd φ B
50 49 adantr φ ¬ C 0 B
51 1 rpcnd φ A
52 51 adantr φ ¬ C 0 A
53 0red φ ¬ C 0 0
54 50 abscld φ ¬ C 0 B
55 52 abscld φ ¬ C 0 A
56 50 absge0d φ ¬ C 0 0 B
57 3 adantr φ ¬ C 0 B < A
58 53 54 55 56 57 lelttrd φ ¬ C 0 0 < A
59 58 gt0ne0d φ ¬ C 0 A 0
60 52 abs00ad φ ¬ C 0 A = 0 A = 0
61 60 necon3bid φ ¬ C 0 A 0 A 0
62 59 61 mpbid φ ¬ C 0 A 0
63 50 52 62 divcld φ ¬ C 0 B A
64 63 abscld φ ¬ C 0 B A
65 63 absge0d φ ¬ C 0 0 B A
66 55 recnd φ ¬ C 0 A
67 66 mulid1d φ ¬ C 0 A 1 = A
68 57 67 breqtrrd φ ¬ C 0 B < A 1
69 1red φ ¬ C 0 1
70 55 58 elrpd φ ¬ C 0 A +
71 54 69 70 ltdivmuld φ ¬ C 0 B A < 1 B < A 1
72 68 71 mpbird φ ¬ C 0 B A < 1
73 50 52 62 absdivd φ ¬ C 0 B A = B A
74 1 2 3 4 5 6 7 binomcxplemradcnv φ ¬ C 0 R = 1
75 72 73 74 3brtr4d φ ¬ C 0 B A < R
76 0re 0
77 ssrab2 r | seq 0 + S r dom
78 ressxr *
79 77 78 sstri r | seq 0 + S r dom *
80 supxrcl r | seq 0 + S r dom * sup r | seq 0 + S r dom * < *
81 79 80 ax-mp sup r | seq 0 + S r dom * < *
82 7 81 eqeltri R *
83 elico2 0 R * B A 0 R B A 0 B A B A < R
84 76 82 83 mp2an B A 0 R B A 0 B A B A < R
85 64 65 75 84 syl3anbrc φ ¬ C 0 B A 0 R
86 9 eleq2i B A D B A abs -1 0 R
87 absf abs :
88 ffn abs : abs Fn
89 elpreima abs Fn B A abs -1 0 R B A B A 0 R
90 87 88 89 mp2b B A abs -1 0 R B A B A 0 R
91 86 90 bitri B A D B A B A 0 R
92 63 85 91 sylanbrc φ ¬ C 0 B A D
93 sumex k 0 S B A k V
94 93 a1i φ ¬ C 0 k 0 S B A k V
95 44 48 92 94 fvmptd φ ¬ C 0 P B A = k 0 S B A k
96 eqid abs = abs
97 96 cnbl0 R * abs -1 0 R = 0 ball abs R
98 82 97 ax-mp abs -1 0 R = 0 ball abs R
99 9 98 eqtri D = 0 ball abs R
100 0cnd φ ¬ C 0 0
101 82 a1i φ ¬ C 0 R *
102 mulcl x y x y
103 102 adantl φ ¬ C 0 x y x y
104 nfv b φ ¬ C 0
105 29 nfcri b x D
106 104 105 nfan b φ ¬ C 0 x D
107 37 nfel1 b k 0 S x k
108 106 107 nfim b φ ¬ C 0 x D k 0 S x k
109 eleq1 b = x b D x D
110 109 anbi2d b = x φ ¬ C 0 b D φ ¬ C 0 x D
111 41 eleq1d b = x k 0 S b k k 0 S x k
112 110 111 imbi12d b = x φ ¬ C 0 b D k 0 S b k φ ¬ C 0 x D k 0 S x k
113 nn0uz 0 = 0
114 0zd φ ¬ C 0 b D 0
115 eqidd φ ¬ C 0 b D k 0 S b k = S b k
116 cnvimass abs -1 0 R dom abs
117 9 116 eqsstri D dom abs
118 87 fdmi dom abs =
119 117 118 sseqtri D
120 119 sseli b D b
121 6 a1i φ S = b k 0 F k b k
122 nn0ex 0 V
123 122 mptex k 0 F k b k V
124 123 a1i φ b k 0 F k b k V
125 121 124 fvmpt2d φ b S b = k 0 F k b k
126 ovexd φ b k 0 F k b k V
127 125 126 fvmpt2d φ b k 0 S b k = F k b k
128 5 a1i φ k 0 F = j 0 C C 𝑐 j
129 simpr φ k 0 j = k j = k
130 129 oveq2d φ k 0 j = k C C 𝑐 j = C C 𝑐 k
131 simpr φ k 0 k 0
132 ovexd φ k 0 C C 𝑐 k V
133 128 130 131 132 fvmptd φ k 0 F k = C C 𝑐 k
134 133 oveq1d φ k 0 F k b k = C C 𝑐 k b k
135 134 adantlr φ b k 0 F k b k = C C 𝑐 k b k
136 127 135 eqtrd φ b k 0 S b k = C C 𝑐 k b k
137 120 136 sylanl2 φ b D k 0 S b k = C C 𝑐 k b k
138 4 ad2antrr φ b D k 0 C
139 simpr φ b D k 0 k 0
140 138 139 bcccl φ b D k 0 C C 𝑐 k
141 120 ad2antlr φ b D k 0 b
142 141 139 expcld φ b D k 0 b k
143 140 142 mulcld φ b D k 0 C C 𝑐 k b k
144 137 143 eqeltrd φ b D k 0 S b k
145 144 adantllr φ ¬ C 0 b D k 0 S b k
146 eleq1 x = b x D b D
147 146 anbi2d x = b φ x D φ b D
148 fveq2 x = b S x = S b
149 148 seqeq3d x = b seq 0 + S x = seq 0 + S b
150 149 eleq1d x = b seq 0 + S x dom seq 0 + S b dom
151 fveq2 x = b E x = E b
152 151 seqeq3d x = b seq 1 + E x = seq 1 + E b
153 152 eleq1d x = b seq 1 + E x dom seq 1 + E b dom
154 150 153 anbi12d x = b seq 0 + S x dom seq 1 + E x dom seq 0 + S b dom seq 1 + E b dom
155 147 154 imbi12d x = b φ x D seq 0 + S x dom seq 1 + E x dom φ b D seq 0 + S b dom seq 1 + E b dom
156 1 2 3 4 5 6 7 8 9 binomcxplemcvg φ x D seq 0 + S x dom seq 1 + E x dom
157 155 156 chvarvv φ b D seq 0 + S b dom seq 1 + E b dom
158 157 simpld φ b D seq 0 + S b dom
159 158 adantlr φ ¬ C 0 b D seq 0 + S b dom
160 113 114 115 145 159 isumcl φ ¬ C 0 b D k 0 S b k
161 108 112 160 chvarfv φ ¬ C 0 x D k 0 S x k
162 161 43 fmptd φ ¬ C 0 P : D
163 1cnd φ ¬ C 0 x D 1
164 119 sseli x D x
165 164 adantl φ ¬ C 0 x D x
166 163 165 addcld φ ¬ C 0 x D 1 + x
167 4 ad2antrr φ ¬ C 0 x D C
168 167 negcld φ ¬ C 0 x D C
169 166 168 cxpcld φ ¬ C 0 x D 1 + x C
170 nfcv _ x 1 + b C
171 nfcv _ b 1 + x C
172 oveq2 b = x 1 + b = 1 + x
173 172 oveq1d b = x 1 + b C = 1 + x C
174 29 30 170 171 173 cbvmptf b D 1 + b C = x D 1 + x C
175 169 174 fmptd φ ¬ C 0 b D 1 + b C : D
176 cnex V
177 fex abs : V abs V
178 87 176 177 mp2an abs V
179 178 cnvex abs -1 V
180 imaexg abs -1 V abs -1 0 R V
181 179 180 ax-mp abs -1 0 R V
182 9 181 eqeltri D V
183 182 a1i φ ¬ C 0 D V
184 inidm D D = D
185 103 162 175 183 183 184 off φ ¬ C 0 P × f b D 1 + b C : D
186 1ex 1 V
187 186 fconst D × 1 : D 1
188 fconstmpt D × 1 = x D 1
189 nfcv _ b 1
190 nfcv _ x 1
191 eqidd x = b 1 = 1
192 30 29 189 190 191 cbvmptf x D 1 = b D 1
193 188 192 eqtri D × 1 = b D 1
194 193 feq1i D × 1 : D 1 b D 1 : D 1
195 187 194 mpbi b D 1 : D 1
196 ax-1cn 1
197 snssi 1 1
198 196 197 ax-mp 1
199 fss b D 1 : D 1 1 b D 1 : D
200 195 198 199 mp2an b D 1 : D
201 200 a1i φ ¬ C 0 b D 1 : D
202 cnelprrecn
203 202 a1i φ ¬ C 0
204 1 2 3 4 5 6 7 8 9 10 binomcxplemdvsum φ D P = b D k E b k
205 204 adantr φ ¬ C 0 D P = b D k E b k
206 nfcv _ x k E b k
207 nfcv _ b
208 nfmpt1 _ b b k k F k b k 1
209 8 208 nfcxfr _ b E
210 209 33 nffv _ b E x
211 210 35 nffv _ b E x k
212 207 211 nfsum _ b k E x k
213 simpl b = x k b = x
214 213 fveq2d b = x k E b = E x
215 214 fveq1d b = x k E b k = E x k
216 215 sumeq2dv b = x k E b k = k E x k
217 29 30 206 212 216 cbvmptf b D k E b k = x D k E x k
218 205 217 eqtrdi φ ¬ C 0 D P = x D k E x k
219 sumex k E x k V
220 219 a1i φ ¬ C 0 x D k E x k V
221 218 220 fmpt3d φ ¬ C 0 P : D V
222 221 fdmd φ ¬ C 0 dom P = D
223 1 2 3 4 5 6 7 8 9 binomcxplemdvbinom φ ¬ C 0 db D 1 + b C d b = b D C 1 + b - C - 1
224 nfcv _ x C 1 + b - C - 1
225 nfcv _ b C 1 + x - C - 1
226 172 oveq1d b = x 1 + b - C - 1 = 1 + x - C - 1
227 226 oveq2d b = x C 1 + b - C - 1 = C 1 + x - C - 1
228 29 30 224 225 227 cbvmptf b D C 1 + b - C - 1 = x D C 1 + x - C - 1
229 223 228 eqtrdi φ ¬ C 0 db D 1 + b C d b = x D C 1 + x - C - 1
230 168 163 subcld φ ¬ C 0 x D - C - 1
231 166 230 cxpcld φ ¬ C 0 x D 1 + x - C - 1
232 168 231 mulcld φ ¬ C 0 x D C 1 + x - C - 1
233 229 232 fmpt3d φ ¬ C 0 db D 1 + b C d b : D
234 233 fdmd φ ¬ C 0 dom db D 1 + b C d b = D
235 203 162 175 222 234 dvmulf φ ¬ C 0 D P × f b D 1 + b C = P × f b D 1 + b C + f db D 1 + b C d b × f P
236 4 ad2antrr φ ¬ C 0 b D C
237 236 mulid1d φ ¬ C 0 b D C 1 = C
238 237 oveq1d φ ¬ C 0 b D C 1 + C k C C 𝑐 k b k = C + C k C C 𝑐 k b k
239 1cnd φ ¬ C 0 b D 1
240 nnuz = 1
241 1zzd φ ¬ C 0 b D 1
242 nnnn0 k k 0
243 242 137 sylan2 φ b D k S b k = C C 𝑐 k b k
244 243 adantllr φ ¬ C 0 b D k S b k = C C 𝑐 k b k
245 4 ad3antrrr φ ¬ C 0 b D k 0 C
246 simpr φ ¬ C 0 b D k 0 k 0
247 245 246 bcccl φ ¬ C 0 b D k 0 C C 𝑐 k
248 242 247 sylan2 φ ¬ C 0 b D k C C 𝑐 k
249 120 adantl φ ¬ C 0 b D b
250 249 adantr φ ¬ C 0 b D k 0 b
251 250 246 expcld φ ¬ C 0 b D k 0 b k
252 242 251 sylan2 φ ¬ C 0 b D k b k
253 248 252 mulcld φ ¬ C 0 b D k C C 𝑐 k b k
254 1nn0 1 0
255 254 a1i φ b D 1 0
256 113 255 144 iserex φ b D seq 0 + S b dom seq 1 + S b dom
257 158 256 mpbid φ b D seq 1 + S b dom
258 257 adantlr φ ¬ C 0 b D seq 1 + S b dom
259 240 241 244 253 258 isumcl φ ¬ C 0 b D k C C 𝑐 k b k
260 236 239 259 adddid φ ¬ C 0 b D C 1 + k C C 𝑐 k b k = C 1 + C k C C 𝑐 k b k
261 8 a1i φ E = b k k F k b k 1
262 nnex V
263 262 mptex k k F k b k 1 V
264 263 a1i φ b k k F k b k 1 V
265 261 264 fvmpt2d φ b E b = k k F k b k 1
266 120 265 sylan2 φ b D E b = k k F k b k 1
267 266 adantlr φ ¬ C 0 b D E b = k k F k b k 1
268 ovexd φ ¬ C 0 b D k k F k b k 1 V
269 267 268 fmpt3d φ ¬ C 0 b D E b : V
270 269 feqmptd φ ¬ C 0 b D E b = k E b k
271 ovexd φ b k k F k b k 1 V
272 265 271 fvmpt2d φ b k E b k = k F k b k 1
273 242 133 sylan2 φ k F k = C C 𝑐 k
274 273 oveq2d φ k k F k = k C C 𝑐 k
275 274 oveq1d φ k k F k b k 1 = k C C 𝑐 k b k 1
276 275 adantlr φ b k k F k b k 1 = k C C 𝑐 k b k 1
277 272 276 eqtrd φ b k E b k = k C C 𝑐 k b k 1
278 4 adantr φ k C
279 nnm1nn0 k k 1 0
280 279 adantl φ k k 1 0
281 278 280 bccp1k φ k C C 𝑐 k - 1 + 1 = C C 𝑐 k 1 C k 1 k - 1 + 1
282 242 adantl φ k k 0
283 282 nn0cnd φ k k
284 1cnd φ k 1
285 283 284 npcand φ k k - 1 + 1 = k
286 285 oveq2d φ k C C 𝑐 k - 1 + 1 = C C 𝑐 k
287 285 oveq2d φ k C k 1 k - 1 + 1 = C k 1 k
288 287 oveq2d φ k C C 𝑐 k 1 C k 1 k - 1 + 1 = C C 𝑐 k 1 C k 1 k
289 281 286 288 3eqtr3d φ k C C 𝑐 k = C C 𝑐 k 1 C k 1 k
290 289 oveq2d φ k k C C 𝑐 k = k C C 𝑐 k 1 C k 1 k
291 278 280 bcccl φ k C C 𝑐 k 1
292 283 284 subcld φ k k 1
293 278 292 subcld φ k C k 1
294 nnne0 k k 0
295 294 adantl φ k k 0
296 291 293 283 295 divassd φ k C C 𝑐 k 1 C k 1 k = C C 𝑐 k 1 C k 1 k
297 296 oveq2d φ k k C C 𝑐 k 1 C k 1 k = k C C 𝑐 k 1 C k 1 k
298 291 293 mulcld φ k C C 𝑐 k 1 C k 1
299 298 283 295 divcan2d φ k k C C 𝑐 k 1 C k 1 k = C C 𝑐 k 1 C k 1
300 290 297 299 3eqtr2d φ k k C C 𝑐 k = C C 𝑐 k 1 C k 1
301 300 oveq1d φ k k C C 𝑐 k b k 1 = C C 𝑐 k 1 C k 1 b k 1
302 301 adantlr φ b k k C C 𝑐 k b k 1 = C C 𝑐 k 1 C k 1 b k 1
303 291 adantlr φ b k C C 𝑐 k 1
304 293 adantlr φ b k C k 1
305 303 304 mulcomd φ b k C C 𝑐 k 1 C k 1 = C k 1 C C 𝑐 k 1
306 305 oveq1d φ b k C C 𝑐 k 1 C k 1 b k 1 = C k 1 C C 𝑐 k 1 b k 1
307 277 302 306 3eqtrd φ b k E b k = C k 1 C C 𝑐 k 1 b k 1
308 120 307 sylanl2 φ b D k E b k = C k 1 C C 𝑐 k 1 b k 1
309 308 adantllr φ ¬ C 0 b D k E b k = C k 1 C C 𝑐 k 1 b k 1
310 309 mpteq2dva φ ¬ C 0 b D k E b k = k C k 1 C C 𝑐 k 1 b k 1
311 270 310 eqtrd φ ¬ C 0 b D E b = k C k 1 C C 𝑐 k 1 b k 1
312 311 oveq1d φ ¬ C 0 b D E b shift -1 = k C k 1 C C 𝑐 k 1 b k 1 shift -1
313 eqid k C k 1 C C 𝑐 k 1 b k 1 = k C k 1 C C 𝑐 k 1 b k 1
314 ovex C k 1 C C 𝑐 k 1 b k 1 V
315 oveq1 k = j -1 k 1 = j - -1 - 1
316 315 oveq2d k = j -1 C k 1 = C j - -1 - 1
317 315 oveq2d k = j -1 C C 𝑐 k 1 = C C 𝑐 j - -1 - 1
318 316 317 oveq12d k = j -1 C k 1 C C 𝑐 k 1 = C j - -1 - 1 C C 𝑐 j - -1 - 1
319 315 oveq2d k = j -1 b k 1 = b j - -1 - 1
320 318 319 oveq12d k = j -1 C k 1 C C 𝑐 k 1 b k 1 = C j - -1 - 1 C C 𝑐 j - -1 - 1 b j - -1 - 1
321 1pneg1e0 1 + -1 = 0
322 321 fveq2i 1 + -1 = 0
323 113 322 eqtr4i 0 = 1 + -1
324 241 znegcld φ ¬ C 0 b D 1
325 313 314 320 240 323 241 324 uzmptshftfval φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1 shift -1 = j 0 C j - -1 - 1 C C 𝑐 j - -1 - 1 b j - -1 - 1
326 oveq1 j = k j -1 = k -1
327 326 oveq1d j = k j - -1 - 1 = k - -1 - 1
328 327 oveq2d j = k C j - -1 - 1 = C k - -1 - 1
329 327 oveq2d j = k C C 𝑐 j - -1 - 1 = C C 𝑐 k - -1 - 1
330 328 329 oveq12d j = k C j - -1 - 1 C C 𝑐 j - -1 - 1 = C k - -1 - 1 C C 𝑐 k - -1 - 1
331 327 oveq2d j = k b j - -1 - 1 = b k - -1 - 1
332 330 331 oveq12d j = k C j - -1 - 1 C C 𝑐 j - -1 - 1 b j - -1 - 1 = C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1
333 332 cbvmptv j 0 C j - -1 - 1 C C 𝑐 j - -1 - 1 b j - -1 - 1 = k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1
334 333 a1i φ ¬ C 0 b D j 0 C j - -1 - 1 C C 𝑐 j - -1 - 1 b j - -1 - 1 = k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1
335 312 325 334 3eqtrd φ ¬ C 0 b D E b shift -1 = k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1
336 nn0cn k 0 k
337 1cnd k 0 1
338 336 337 subnegd k 0 k -1 = k + 1
339 338 oveq1d k 0 k - -1 - 1 = k + 1 - 1
340 336 337 pncand k 0 k + 1 - 1 = k
341 339 340 eqtrd k 0 k - -1 - 1 = k
342 341 adantl φ ¬ C 0 b D k 0 k - -1 - 1 = k
343 342 oveq2d φ ¬ C 0 b D k 0 C k - -1 - 1 = C k
344 342 oveq2d φ ¬ C 0 b D k 0 C C 𝑐 k - -1 - 1 = C C 𝑐 k
345 343 344 oveq12d φ ¬ C 0 b D k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 = C k C C 𝑐 k
346 342 oveq2d φ ¬ C 0 b D k 0 b k - -1 - 1 = b k
347 345 346 oveq12d φ ¬ C 0 b D k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1 = C k C C 𝑐 k b k
348 347 mpteq2dva φ ¬ C 0 b D k 0 C k - -1 - 1 C C 𝑐 k - -1 - 1 b k - -1 - 1 = k 0 C k C C 𝑐 k b k
349 335 348 eqtrd φ ¬ C 0 b D E b shift -1 = k 0 C k C C 𝑐 k b k
350 ovexd φ ¬ C 0 b D k 0 C k C C 𝑐 k b k V
351 349 350 fvmpt2d φ ¬ C 0 b D k 0 E b shift -1 k = C k C C 𝑐 k b k
352 242 351 sylan2 φ ¬ C 0 b D k E b shift -1 k = C k C C 𝑐 k b k
353 336 adantl φ ¬ C 0 b D k 0 k
354 245 353 subcld φ ¬ C 0 b D k 0 C k
355 354 247 mulcld φ ¬ C 0 b D k 0 C k C C 𝑐 k
356 355 251 mulcld φ ¬ C 0 b D k 0 C k C C 𝑐 k b k
357 242 356 sylan2 φ ¬ C 0 b D k C k C C 𝑐 k b k
358 fveq2 k = j E b k = E b j
359 358 oveq2d k = j b E b k = b E b j
360 359 cbvmptv k b E b k = j b E b j
361 309 oveq2d φ ¬ C 0 b D k b E b k = b C k 1 C C 𝑐 k 1 b k 1
362 249 adantr φ ¬ C 0 b D k b
363 4 ad3antrrr φ ¬ C 0 b D k C
364 nncn k k
365 364 adantl φ ¬ C 0 b D k k
366 1cnd φ ¬ C 0 b D k 1
367 365 366 subcld φ ¬ C 0 b D k k 1
368 363 367 subcld φ ¬ C 0 b D k C k 1
369 279 adantl φ ¬ C 0 b D k k 1 0
370 363 369 bcccl φ ¬ C 0 b D k C C 𝑐 k 1
371 368 370 mulcld φ ¬ C 0 b D k C k 1 C C 𝑐 k 1
372 362 369 expcld φ ¬ C 0 b D k b k 1
373 362 371 372 mul12d φ ¬ C 0 b D k b C k 1 C C 𝑐 k 1 b k 1 = C k 1 C C 𝑐 k 1 b b k 1
374 362 372 mulcomd φ ¬ C 0 b D k b b k 1 = b k 1 b
375 362 369 expp1d φ ¬ C 0 b D k b k - 1 + 1 = b k 1 b
376 285 adantlr φ ¬ C 0 k k - 1 + 1 = k
377 376 adantlr φ ¬ C 0 b D k k - 1 + 1 = k
378 377 oveq2d φ ¬ C 0 b D k b k - 1 + 1 = b k
379 374 375 378 3eqtr2d φ ¬ C 0 b D k b b k 1 = b k
380 379 oveq2d φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b b k 1 = C k 1 C C 𝑐 k 1 b k
381 373 380 eqtrd φ ¬ C 0 b D k b C k 1 C C 𝑐 k 1 b k 1 = C k 1 C C 𝑐 k 1 b k
382 361 381 eqtrd φ ¬ C 0 b D k b E b k = C k 1 C C 𝑐 k 1 b k
383 382 mpteq2dva φ ¬ C 0 b D k b E b k = k C k 1 C C 𝑐 k 1 b k
384 360 383 eqtr3id φ ¬ C 0 b D j b E b j = k C k 1 C C 𝑐 k 1 b k
385 ovexd φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k V
386 384 385 fvmpt2d φ ¬ C 0 b D k j b E b j k = C k 1 C C 𝑐 k 1 b k
387 371 252 mulcld φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k
388 climrel Rel
389 157 simprd φ b D seq 1 + E b dom
390 389 adantlr φ ¬ C 0 b D seq 1 + E b dom
391 climdm seq 1 + E b dom seq 1 + E b seq 1 + E b
392 390 391 sylib φ ¬ C 0 b D seq 1 + E b seq 1 + E b
393 0z 0
394 neg1z 1
395 fvex E b V
396 395 seqshft 0 1 seq 0 + E b shift -1 = seq 0 -1 + E b shift -1
397 393 394 396 mp2an seq 0 + E b shift -1 = seq 0 -1 + E b shift -1
398 0cn 0
399 398 196 subnegi 0 -1 = 0 + 1
400 0p1e1 0 + 1 = 1
401 399 400 eqtri 0 -1 = 1
402 seqeq1 0 -1 = 1 seq 0 -1 + E b = seq 1 + E b
403 401 402 ax-mp seq 0 -1 + E b = seq 1 + E b
404 403 oveq1i seq 0 -1 + E b shift -1 = seq 1 + E b shift -1
405 397 404 eqtri seq 0 + E b shift -1 = seq 1 + E b shift -1
406 405 breq1i seq 0 + E b shift -1 seq 1 + E b seq 1 + E b shift -1 seq 1 + E b
407 seqex seq 1 + E b V
408 climshft 1 seq 1 + E b V seq 1 + E b shift -1 seq 1 + E b seq 1 + E b seq 1 + E b
409 394 407 408 mp2an seq 1 + E b shift -1 seq 1 + E b seq 1 + E b seq 1 + E b
410 406 409 bitri seq 0 + E b shift -1 seq 1 + E b seq 1 + E b seq 1 + E b
411 392 410 sylibr φ ¬ C 0 b D seq 0 + E b shift -1 seq 1 + E b
412 releldm Rel seq 0 + E b shift -1 seq 1 + E b seq 0 + E b shift -1 dom
413 388 411 412 sylancr φ ¬ C 0 b D seq 0 + E b shift -1 dom
414 254 a1i φ ¬ C 0 b D 1 0
415 351 356 eqeltrd φ ¬ C 0 b D k 0 E b shift -1 k
416 113 414 415 iserex φ ¬ C 0 b D seq 0 + E b shift -1 dom seq 1 + E b shift -1 dom
417 413 416 mpbid φ ¬ C 0 b D seq 1 + E b shift -1 dom
418 371 372 mulcld φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1
419 309 418 eqeltrd φ ¬ C 0 b D k E b k
420 386 382 eqtr4d φ ¬ C 0 b D k j b E b j k = b E b k
421 240 241 249 392 419 420 isermulc2 φ ¬ C 0 b D seq 1 + j b E b j b seq 1 + E b
422 releldm Rel seq 1 + j b E b j b seq 1 + E b seq 1 + j b E b j dom
423 388 421 422 sylancr φ ¬ C 0 b D seq 1 + j b E b j dom
424 240 241 352 357 386 387 417 423 isumadd φ ¬ C 0 b D k C k C C 𝑐 k b k + C k 1 C C 𝑐 k 1 b k = k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k
425 424 oveq2d φ ¬ C 0 b D C + k C k C C 𝑐 k b k + C k 1 C C 𝑐 k 1 b k = C + k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k
426 363 365 subcld φ ¬ C 0 b D k C k
427 426 248 mulcld φ ¬ C 0 b D k C k C C 𝑐 k
428 427 371 252 adddird φ ¬ C 0 b D k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = C k C C 𝑐 k b k + C k 1 C C 𝑐 k 1 b k
429 428 sumeq2dv φ ¬ C 0 b D k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = k C k C C 𝑐 k b k + C k 1 C C 𝑐 k 1 b k
430 429 oveq2d φ ¬ C 0 b D C + k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = C + k C k C C 𝑐 k b k + C k 1 C C 𝑐 k 1 b k
431 307 sumeq2dv φ b k E b k = k C k 1 C C 𝑐 k 1 b k 1
432 431 oveq2d φ b 1 + b k E b k = 1 + b k C k 1 C C 𝑐 k 1 b k 1
433 120 432 sylan2 φ b D 1 + b k E b k = 1 + b k C k 1 C C 𝑐 k 1 b k 1
434 433 adantlr φ ¬ C 0 b D 1 + b k E b k = 1 + b k C k 1 C C 𝑐 k 1 b k 1
435 240 241 309 418 390 isumcl φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1
436 239 249 435 adddird φ ¬ C 0 b D 1 + b k C k 1 C C 𝑐 k 1 b k 1 = 1 k C k 1 C C 𝑐 k 1 b k 1 + b k C k 1 C C 𝑐 k 1 b k 1
437 435 mulid2d φ ¬ C 0 b D 1 k C k 1 C C 𝑐 k 1 b k 1 = k C k 1 C C 𝑐 k 1 b k 1
438 240 241 309 418 390 249 isummulc2 φ ¬ C 0 b D b k C k 1 C C 𝑐 k 1 b k 1 = k b C k 1 C C 𝑐 k 1 b k 1
439 381 sumeq2dv φ ¬ C 0 b D k b C k 1 C C 𝑐 k 1 b k 1 = k C k 1 C C 𝑐 k 1 b k
440 438 439 eqtrd φ ¬ C 0 b D b k C k 1 C C 𝑐 k 1 b k 1 = k C k 1 C C 𝑐 k 1 b k
441 437 440 oveq12d φ ¬ C 0 b D 1 k C k 1 C C 𝑐 k 1 b k 1 + b k C k 1 C C 𝑐 k 1 b k 1 = k C k 1 C C 𝑐 k 1 b k 1 + k C k 1 C C 𝑐 k 1 b k
442 434 436 441 3eqtrd φ ¬ C 0 b D 1 + b k E b k = k C k 1 C C 𝑐 k 1 b k 1 + k C k 1 C C 𝑐 k 1 b k
443 400 fveq2i 0 + 1 = 1
444 240 443 eqtr4i = 0 + 1
445 oveq1 k = 1 + j k 1 = 1 + j - 1
446 445 oveq2d k = 1 + j C k 1 = C 1 + j - 1
447 445 oveq2d k = 1 + j C C 𝑐 k 1 = C C 𝑐 1 + j - 1
448 446 447 oveq12d k = 1 + j C k 1 C C 𝑐 k 1 = C 1 + j - 1 C C 𝑐 1 + j - 1
449 445 oveq2d k = 1 + j b k 1 = b 1 + j - 1
450 448 449 oveq12d k = 1 + j C k 1 C C 𝑐 k 1 b k 1 = C 1 + j - 1 C C 𝑐 1 + j - 1 b 1 + j - 1
451 113 444 450 241 114 418 isumshft φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1 = j 0 C 1 + j - 1 C C 𝑐 1 + j - 1 b 1 + j - 1
452 oveq2 j = k 1 + j = 1 + k
453 452 oveq1d j = k 1 + j - 1 = 1 + k - 1
454 453 oveq2d j = k C 1 + j - 1 = C 1 + k - 1
455 453 oveq2d j = k C C 𝑐 1 + j - 1 = C C 𝑐 1 + k - 1
456 454 455 oveq12d j = k C 1 + j - 1 C C 𝑐 1 + j - 1 = C 1 + k - 1 C C 𝑐 1 + k - 1
457 453 oveq2d j = k b 1 + j - 1 = b 1 + k - 1
458 456 457 oveq12d j = k C 1 + j - 1 C C 𝑐 1 + j - 1 b 1 + j - 1 = C 1 + k - 1 C C 𝑐 1 + k - 1 b 1 + k - 1
459 458 cbvsumv j 0 C 1 + j - 1 C C 𝑐 1 + j - 1 b 1 + j - 1 = k 0 C 1 + k - 1 C C 𝑐 1 + k - 1 b 1 + k - 1
460 459 a1i φ ¬ C 0 b D j 0 C 1 + j - 1 C C 𝑐 1 + j - 1 b 1 + j - 1 = k 0 C 1 + k - 1 C C 𝑐 1 + k - 1 b 1 + k - 1
461 1cnd φ ¬ C 0 b D k 0 1
462 461 353 pncan2d φ ¬ C 0 b D k 0 1 + k - 1 = k
463 462 oveq2d φ ¬ C 0 b D k 0 C 1 + k - 1 = C k
464 462 oveq2d φ ¬ C 0 b D k 0 C C 𝑐 1 + k - 1 = C C 𝑐 k
465 463 464 oveq12d φ ¬ C 0 b D k 0 C 1 + k - 1 C C 𝑐 1 + k - 1 = C k C C 𝑐 k
466 462 oveq2d φ ¬ C 0 b D k 0 b 1 + k - 1 = b k
467 465 466 oveq12d φ ¬ C 0 b D k 0 C 1 + k - 1 C C 𝑐 1 + k - 1 b 1 + k - 1 = C k C C 𝑐 k b k
468 467 sumeq2dv φ ¬ C 0 b D k 0 C 1 + k - 1 C C 𝑐 1 + k - 1 b 1 + k - 1 = k 0 C k C C 𝑐 k b k
469 451 460 468 3eqtrd φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1 = k 0 C k C C 𝑐 k b k
470 113 114 351 356 413 isum1p φ ¬ C 0 b D k 0 C k C C 𝑐 k b k = E b shift -1 0 + k 0 + 1 C k C C 𝑐 k b k
471 simpr φ ¬ C 0 b D k = 0 k = 0
472 471 oveq2d φ ¬ C 0 b D k = 0 C k = C 0
473 471 oveq2d φ ¬ C 0 b D k = 0 C C 𝑐 k = C C 𝑐 0
474 472 473 oveq12d φ ¬ C 0 b D k = 0 C k C C 𝑐 k = C 0 C C 𝑐 0
475 471 oveq2d φ ¬ C 0 b D k = 0 b k = b 0
476 474 475 oveq12d φ ¬ C 0 b D k = 0 C k C C 𝑐 k b k = C 0 C C 𝑐 0 b 0
477 0nn0 0 0
478 477 a1i φ ¬ C 0 b D 0 0
479 ovexd φ ¬ C 0 b D C 0 C C 𝑐 0 b 0 V
480 349 476 478 479 fvmptd φ ¬ C 0 b D E b shift -1 0 = C 0 C C 𝑐 0 b 0
481 236 subid1d φ ¬ C 0 b D C 0 = C
482 236 bccn0 φ ¬ C 0 b D C C 𝑐 0 = 1
483 481 482 oveq12d φ ¬ C 0 b D C 0 C C 𝑐 0 = C 1
484 483 237 eqtrd φ ¬ C 0 b D C 0 C C 𝑐 0 = C
485 249 exp0d φ ¬ C 0 b D b 0 = 1
486 484 485 oveq12d φ ¬ C 0 b D C 0 C C 𝑐 0 b 0 = C 1
487 480 486 237 3eqtrd φ ¬ C 0 b D E b shift -1 0 = C
488 444 eqcomi 0 + 1 =
489 488 sumeq1i k 0 + 1 C k C C 𝑐 k b k = k C k C C 𝑐 k b k
490 489 a1i φ ¬ C 0 b D k 0 + 1 C k C C 𝑐 k b k = k C k C C 𝑐 k b k
491 487 490 oveq12d φ ¬ C 0 b D E b shift -1 0 + k 0 + 1 C k C C 𝑐 k b k = C + k C k C C 𝑐 k b k
492 469 470 491 3eqtrd φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1 = C + k C k C C 𝑐 k b k
493 492 oveq1d φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k 1 + k C k 1 C C 𝑐 k 1 b k = C + k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k
494 240 241 352 357 417 isumcl φ ¬ C 0 b D k C k C C 𝑐 k b k
495 249 435 mulcld φ ¬ C 0 b D b k C k 1 C C 𝑐 k 1 b k 1
496 440 495 eqeltrrd φ ¬ C 0 b D k C k 1 C C 𝑐 k 1 b k
497 236 494 496 addassd φ ¬ C 0 b D C + k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k = C + k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k
498 442 493 497 3eqtrd φ ¬ C 0 b D 1 + b k E b k = C + k C k C C 𝑐 k b k + k C k 1 C C 𝑐 k 1 b k
499 425 430 498 3eqtr4rd φ ¬ C 0 b D 1 + b k E b k = C + k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k
500 simpr φ k k
501 278 500 binomcxplemwb φ k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 = C C C 𝑐 k
502 501 oveq1d φ k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = C C C 𝑐 k b k
503 502 sumeq2dv φ k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = k C C C 𝑐 k b k
504 503 oveq2d φ C + k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = C + k C C C 𝑐 k b k
505 504 ad2antrr φ ¬ C 0 b D C + k C k C C 𝑐 k + C k 1 C C 𝑐 k 1 b k = C + k C C C 𝑐 k b k
506 363 248 252 mulassd φ ¬ C 0 b D k C C C 𝑐 k b k = C C C 𝑐 k b k
507 506 sumeq2dv φ ¬ C 0 b D k C C C 𝑐 k b k = k C C C 𝑐 k b k
508 240 241 244 253 258 236 isummulc2 φ ¬ C 0 b D C k C C 𝑐 k b k = k C C C 𝑐 k b k
509 507 508 eqtr4d φ ¬ C 0 b D k C C C 𝑐 k b k = C k C C 𝑐 k b k
510 509 oveq2d φ ¬ C 0 b D C + k C C C 𝑐 k b k = C + C k C C 𝑐 k b k
511 499 505 510 3eqtrd φ ¬ C 0 b D 1 + b k E b k = C + C k C C 𝑐 k b k
512 238 260 511 3eqtr4rd φ ¬ C 0 b D 1 + b k E b k = C 1 + k C C 𝑐 k b k
513 6 a1i φ ¬ C 0 S = b k 0 F k b k
514 123 a1i φ ¬ C 0 b k 0 F k b k V
515 513 514 fvmpt2d φ ¬ C 0 b S b = k 0 F k b k
516 120 515 sylan2 φ ¬ C 0 b D S b = k 0 F k b k
517 ovexd φ ¬ C 0 b D k 0 F k b k V
518 516 517 fvmpt2d φ ¬ C 0 b D k 0 S b k = F k b k
519 518 sumeq2dv φ ¬ C 0 b D k 0 S b k = k 0 F k b k
520 4 adantr φ k 0 C
521 520 131 bcccl φ k 0 C C 𝑐 k
522 133 521 eqeltrd φ k 0 F k
523 522 adantlr φ ¬ C 0 k 0 F k
524 523 adantlr φ ¬ C 0 b D k 0 F k
525 524 251 mulcld φ ¬ C 0 b D k 0 F k b k
526 113 114 518 525 159 isum1p φ ¬ C 0 b D k 0 F k b k = S b 0 + k 0 + 1 F k b k
527 471 fveq2d φ ¬ C 0 b D k = 0 F k = F 0
528 527 475 oveq12d φ ¬ C 0 b D k = 0 F k b k = F 0 b 0
529 ovexd φ ¬ C 0 b D F 0 b 0 V
530 516 528 478 529 fvmptd φ ¬ C 0 b D S b 0 = F 0 b 0
531 5 a1i φ F = j 0 C C 𝑐 j
532 simpr φ j = 0 j = 0
533 532 oveq2d φ j = 0 C C 𝑐 j = C C 𝑐 0
534 477 a1i φ 0 0
535 ovexd φ C C 𝑐 0 V
536 531 533 534 535 fvmptd φ F 0 = C C 𝑐 0
537 536 ad2antrr φ ¬ C 0 b D F 0 = C C 𝑐 0
538 537 482 eqtrd φ ¬ C 0 b D F 0 = 1
539 538 485 oveq12d φ ¬ C 0 b D F 0 b 0 = 1 1
540 239 mulid1d φ ¬ C 0 b D 1 1 = 1
541 530 539 540 3eqtrd φ ¬ C 0 b D S b 0 = 1
542 488 sumeq1i k 0 + 1 F k b k = k F k b k
543 134 adantlr φ b D k 0 F k b k = C C 𝑐 k b k
544 242 543 sylan2 φ b D k F k b k = C C 𝑐 k b k
545 544 adantllr φ ¬ C 0 b D k F k b k = C C 𝑐 k b k
546 545 sumeq2dv φ ¬ C 0 b D k F k b k = k C C 𝑐 k b k
547 542 546 syl5eq φ ¬ C 0 b D k 0 + 1 F k b k = k C C 𝑐 k b k
548 541 547 oveq12d φ ¬ C 0 b D S b 0 + k 0 + 1 F k b k = 1 + k C C 𝑐 k b k
549 519 526 548 3eqtrrd φ ¬ C 0 b D 1 + k C C 𝑐 k b k = k 0 S b k
550 549 oveq2d φ ¬ C 0 b D C 1 + k C C 𝑐 k b k = C k 0 S b k
551 512 550 eqtrd φ ¬ C 0 b D 1 + b k E b k = C k 0 S b k
552 236 160 mulcld φ ¬ C 0 b D C k 0 S b k
553 239 249 addcld φ ¬ C 0 b D 1 + b
554 eqidd φ ¬ C 0 b D k E b k = E b k
555 240 241 554 419 390 isumcl φ ¬ C 0 b D k E b k
556 239 249 subnegd φ ¬ C 0 b D 1 b = 1 + b
557 249 negcld φ ¬ C 0 b D b
558 elpreima abs Fn b abs -1 0 R b b 0 R
559 87 88 558 mp2b b abs -1 0 R b b 0 R
560 559 simprbi b abs -1 0 R b 0 R
561 560 9 eleq2s b D b 0 R
562 elico2 0 R * b 0 R b 0 b b < R
563 76 82 562 mp2an b 0 R b 0 b b < R
564 563 simp3bi b 0 R b < R
565 561 564 syl b D b < R
566 565 adantl φ ¬ C 0 b D b < R
567 249 absnegd φ ¬ C 0 b D b = b
568 567 eqcomd φ ¬ C 0 b D b = b
569 74 adantr φ ¬ C 0 b D R = 1
570 566 568 569 3brtr3d φ ¬ C 0 b D b < 1
571 1re 1
572 abssubne0 b 1 b < 1 1 b 0
573 571 572 mp3an2 b b < 1 1 b 0
574 557 570 573 syl2anc φ ¬ C 0 b D 1 b 0
575 556 574 eqnetrrd φ ¬ C 0 b D 1 + b 0
576 552 553 555 575 divmuld φ ¬ C 0 b D C k 0 S b k 1 + b = k E b k 1 + b k E b k = C k 0 S b k
577 551 576 mpbird φ ¬ C 0 b D C k 0 S b k 1 + b = k E b k
578 236 160 553 575 div23d φ ¬ C 0 b D C k 0 S b k 1 + b = C 1 + b k 0 S b k
579 577 578 eqtr3d φ ¬ C 0 b D k E b k = C 1 + b k 0 S b k
580 579 mpteq2dva φ ¬ C 0 b D k E b k = b D C 1 + b k 0 S b k
581 ovexd φ ¬ C 0 b D C 1 + b V
582 sumex k 0 S b k V
583 582 a1i φ ¬ C 0 b D k 0 S b k V
584 eqidd φ ¬ C 0 b D C 1 + b = b D C 1 + b
585 10 a1i φ ¬ C 0 P = b D k 0 S b k
586 104 29 183 581 583 584 585 offval2f φ ¬ C 0 b D C 1 + b × f P = b D C 1 + b k 0 S b k
587 580 205 586 3eqtr4d φ ¬ C 0 D P = b D C 1 + b × f P
588 587 oveq1d φ ¬ C 0 P × f b D 1 + b C = b D C 1 + b × f P × f b D 1 + b C
589 223 oveq1d φ ¬ C 0 db D 1 + b C d b × f P = b D C 1 + b - C - 1 × f P
590 588 589 oveq12d φ ¬ C 0 P × f b D 1 + b C + f db D 1 + b C d b × f P = b D C 1 + b × f P × f b D 1 + b C + f b D C 1 + b - C - 1 × f P
591 ovexd φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C V
592 ovexd φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k V
593 ovexd φ ¬ C 0 b D C 1 + b k 0 S b k V
594 ovexd φ ¬ C 0 b D 1 + b C V
595 eqidd φ ¬ C 0 b D 1 + b C = b D 1 + b C
596 104 29 183 593 594 586 595 offval2f φ ¬ C 0 b D C 1 + b × f P × f b D 1 + b C = b D C 1 + b k 0 S b k 1 + b C
597 ovexd φ ¬ C 0 b D C 1 + b - C - 1 V
598 eqidd φ ¬ C 0 b D C 1 + b - C - 1 = b D C 1 + b - C - 1
599 104 29 183 597 583 598 585 offval2f φ ¬ C 0 b D C 1 + b - C - 1 × f P = b D C 1 + b - C - 1 k 0 S b k
600 104 29 183 591 592 596 599 offval2f φ ¬ C 0 b D C 1 + b × f P × f b D 1 + b C + f b D C 1 + b - C - 1 × f P = b D C 1 + b k 0 S b k 1 + b C + C 1 + b - C - 1 k 0 S b k
601 235 590 600 3eqtrd φ ¬ C 0 D P × f b D 1 + b C = b D C 1 + b k 0 S b k 1 + b C + C 1 + b - C - 1 k 0 S b k
602 236 553 575 divcld φ ¬ C 0 b D C 1 + b
603 236 negcld φ ¬ C 0 b D C
604 553 603 cxpcld φ ¬ C 0 b D 1 + b C
605 602 160 604 mul32d φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C = C 1 + b 1 + b C k 0 S b k
606 236 553 604 575 div32d φ ¬ C 0 b D C 1 + b 1 + b C = C 1 + b C 1 + b
607 553 575 603 239 cxpsubd φ ¬ C 0 b D 1 + b - C - 1 = 1 + b C 1 + b 1
608 553 cxp1d φ ¬ C 0 b D 1 + b 1 = 1 + b
609 608 oveq2d φ ¬ C 0 b D 1 + b C 1 + b 1 = 1 + b C 1 + b
610 607 609 eqtr2d φ ¬ C 0 b D 1 + b C 1 + b = 1 + b - C - 1
611 610 oveq2d φ ¬ C 0 b D C 1 + b C 1 + b = C 1 + b - C - 1
612 606 611 eqtrd φ ¬ C 0 b D C 1 + b 1 + b C = C 1 + b - C - 1
613 612 oveq1d φ ¬ C 0 b D C 1 + b 1 + b C k 0 S b k = C 1 + b - C - 1 k 0 S b k
614 605 613 eqtrd φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C = C 1 + b - C - 1 k 0 S b k
615 603 239 subcld φ ¬ C 0 b D - C - 1
616 553 615 cxpcld φ ¬ C 0 b D 1 + b - C - 1
617 236 616 mulneg1d φ ¬ C 0 b D C 1 + b - C - 1 = C 1 + b - C - 1
618 617 oveq1d φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k = C 1 + b - C - 1 k 0 S b k
619 236 616 mulcld φ ¬ C 0 b D C 1 + b - C - 1
620 619 160 mulneg1d φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k = C 1 + b - C - 1 k 0 S b k
621 618 620 eqtrd φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k = C 1 + b - C - 1 k 0 S b k
622 614 621 oveq12d φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C + C 1 + b - C - 1 k 0 S b k = C 1 + b - C - 1 k 0 S b k + C 1 + b - C - 1 k 0 S b k
623 619 160 mulcld φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k
624 623 negidd φ ¬ C 0 b D C 1 + b - C - 1 k 0 S b k + C 1 + b - C - 1 k 0 S b k = 0
625 622 624 eqtrd φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C + C 1 + b - C - 1 k 0 S b k = 0
626 625 mpteq2dva φ ¬ C 0 b D C 1 + b k 0 S b k 1 + b C + C 1 + b - C - 1 k 0 S b k = b D 0
627 601 626 eqtrd φ ¬ C 0 D P × f b D 1 + b C = b D 0
628 nfcv _ x 0
629 eqidd x = b 0 = 0
630 30 29 12 628 629 cbvmptf x D 0 = b D 0
631 627 630 eqtr4di φ ¬ C 0 D P × f b D 1 + b C = x D 0
632 c0ex 0 V
633 632 snid 0 0
634 633 a1i φ ¬ C 0 x D 0 0
635 631 634 fmpt3d φ ¬ C 0 P × f b D 1 + b C : D 0
636 635 fdmd φ ¬ C 0 dom P × f b D 1 + b C = D
637 1cnd φ ¬ C 0 x 1
638 0cnd φ ¬ C 0 x 0
639 dvconst 1 D × 1 = × 0
640 196 639 ax-mp D × 1 = × 0
641 fconstmpt × 1 = x 1
642 641 oveq2i D × 1 = dx 1 d x
643 fconstmpt × 0 = x 0
644 640 642 643 3eqtr3i dx 1 d x = x 0
645 644 a1i φ ¬ C 0 dx 1 d x = x 0
646 119 a1i φ ¬ C 0 D
647 fvex TopOpen fld V
648 cnfldtps fld TopSp
649 cnfldbas = Base fld
650 eqid TopOpen fld = TopOpen fld
651 649 650 tpsuni fld TopSp = TopOpen fld
652 648 651 ax-mp = TopOpen fld
653 652 restid TopOpen fld V TopOpen fld 𝑡 = TopOpen fld
654 647 653 ax-mp TopOpen fld 𝑡 = TopOpen fld
655 654 eqcomi TopOpen fld = TopOpen fld 𝑡
656 650 cnfldtop TopOpen fld Top
657 cnxmet abs ∞Met
658 650 cnfldtopn TopOpen fld = MetOpen abs
659 658 blopn abs ∞Met 0 R * 0 ball abs R TopOpen fld
660 657 398 82 659 mp3an 0 ball abs R TopOpen fld
661 99 660 eqeltri D TopOpen fld
662 isopn3i TopOpen fld Top D TopOpen fld int TopOpen fld D = D
663 656 661 662 mp2an int TopOpen fld D = D
664 663 a1i φ ¬ C 0 int TopOpen fld D = D
665 203 637 638 645 646 655 650 664 dvmptres2 φ ¬ C 0 dx D 1 d x = x D 0
666 192 oveq2i dx D 1 d x = db D 1 d b
667 665 666 630 3eqtr3g φ ¬ C 0 db D 1 d b = b D 0
668 626 601 667 3eqtr4d φ ¬ C 0 D P × f b D 1 + b C = db D 1 d b
669 1rp 1 +
670 74 669 eqeltrdi φ ¬ C 0 R +
671 blcntr abs ∞Met 0 R + 0 0 ball abs R
672 657 398 671 mp3an12 R + 0 0 ball abs R
673 670 672 syl φ ¬ C 0 0 0 ball abs R
674 673 99 eleqtrrdi φ ¬ C 0 0 D
675 0zd φ ¬ C 0 0
676 eqidd φ ¬ C 0 k 0 S 0 k = S 0 k
677 nfv b φ
678 29 nfel2 b 0 D
679 677 678 nfan b φ 0 D
680 nfv b k 0
681 679 680 nfan b φ 0 D k 0
682 16 12 nffv _ b S 0
683 682 35 nffv _ b S 0 k
684 683 nfel1 b S 0 k
685 681 684 nfim b φ 0 D k 0 S 0 k
686 eleq1 b = 0 b D 0 D
687 686 anbi2d b = 0 φ b D φ 0 D
688 687 anbi1d b = 0 φ b D k 0 φ 0 D k 0
689 fveq2 b = 0 S b = S 0
690 689 fveq1d b = 0 S b k = S 0 k
691 690 eleq1d b = 0 S b k S 0 k
692 688 691 imbi12d b = 0 φ b D k 0 S b k φ 0 D k 0 S 0 k
693 685 632 692 144 vtoclf φ 0 D k 0 S 0 k
694 674 693 syldanl φ ¬ C 0 k 0 S 0 k
695 12 14 682 nfseq _ b seq 0 + S 0
696 695 nfel1 b seq 0 + S 0 dom
697 679 696 nfim b φ 0 D seq 0 + S 0 dom
698 689 seqeq3d b = 0 seq 0 + S b = seq 0 + S 0
699 698 eleq1d b = 0 seq 0 + S b dom seq 0 + S 0 dom
700 687 699 imbi12d b = 0 φ b D seq 0 + S b dom φ 0 D seq 0 + S 0 dom
701 697 632 700 158 vtoclf φ 0 D seq 0 + S 0 dom
702 674 701 syldan φ ¬ C 0 seq 0 + S 0 dom
703 113 675 676 694 702 isum1p φ ¬ C 0 k 0 S 0 k = S 0 0 + k 0 + 1 S 0 k
704 133 adantlr φ ¬ C 0 k 0 F k = C C 𝑐 k
705 704 adantlr φ ¬ C 0 b = 0 k 0 F k = C C 𝑐 k
706 simplr φ ¬ C 0 b = 0 k 0 b = 0
707 706 oveq1d φ ¬ C 0 b = 0 k 0 b k = 0 k
708 705 707 oveq12d φ ¬ C 0 b = 0 k 0 F k b k = C C 𝑐 k 0 k
709 708 mpteq2dva φ ¬ C 0 b = 0 k 0 F k b k = k 0 C C 𝑐 k 0 k
710 122 mptex k 0 C C 𝑐 k 0 k V
711 710 a1i φ ¬ C 0 k 0 C C 𝑐 k 0 k V
712 513 709 100 711 fvmptd φ ¬ C 0 S 0 = k 0 C C 𝑐 k 0 k
713 simpr φ ¬ C 0 k = 0 k = 0
714 713 oveq2d φ ¬ C 0 k = 0 C C 𝑐 k = C C 𝑐 0
715 713 oveq2d φ ¬ C 0 k = 0 0 k = 0 0
716 714 715 oveq12d φ ¬ C 0 k = 0 C C 𝑐 k 0 k = C C 𝑐 0 0 0
717 477 a1i φ ¬ C 0 0 0
718 ovexd φ ¬ C 0 C C 𝑐 0 0 0 V
719 712 716 717 718 fvmptd φ ¬ C 0 S 0 0 = C C 𝑐 0 0 0
720 4 adantr φ ¬ C 0 C
721 720 bccn0 φ ¬ C 0 C C 𝑐 0 = 1
722 100 exp0d φ ¬ C 0 0 0 = 1
723 721 722 oveq12d φ ¬ C 0 C C 𝑐 0 0 0 = 1 1
724 1t1e1 1 1 = 1
725 724 a1i φ ¬ C 0 1 1 = 1
726 719 723 725 3eqtrd φ ¬ C 0 S 0 0 = 1
727 ovexd φ ¬ C 0 k 0 C C 𝑐 k 0 k V
728 712 727 fvmpt2d φ ¬ C 0 k 0 S 0 k = C C 𝑐 k 0 k
729 242 728 sylan2 φ ¬ C 0 k S 0 k = C C 𝑐 k 0 k
730 simpr φ ¬ C 0 k k
731 730 0expd φ ¬ C 0 k 0 k = 0
732 731 oveq2d φ ¬ C 0 k C C 𝑐 k 0 k = C C 𝑐 k 0
733 521 adantlr φ ¬ C 0 k 0 C C 𝑐 k
734 242 733 sylan2 φ ¬ C 0 k C C 𝑐 k
735 734 mul01d φ ¬ C 0 k C C 𝑐 k 0 = 0
736 729 732 735 3eqtrd φ ¬ C 0 k S 0 k = 0
737 736 sumeq2dv φ ¬ C 0 k S 0 k = k 0
738 444 sumeq1i k S 0 k = k 0 + 1 S 0 k
739 240 eqimssi 1
740 739 orci 1 Fin
741 sumz 1 Fin k 0 = 0
742 740 741 ax-mp k 0 = 0
743 737 738 742 3eqtr3g φ ¬ C 0 k 0 + 1 S 0 k = 0
744 726 743 oveq12d φ ¬ C 0 S 0 0 + k 0 + 1 S 0 k = 1 + 0
745 703 744 eqtrd φ ¬ C 0 k 0 S 0 k = 1 + 0
746 1p0e1 1 + 0 = 1
747 746 oveq1i 1 + 0 C = 1 C
748 720 negcld φ ¬ C 0 C
749 748 1cxpd φ ¬ C 0 1 C = 1
750 747 749 syl5eq φ ¬ C 0 1 + 0 C = 1
751 745 750 oveq12d φ ¬ C 0 k 0 S 0 k 1 + 0 C = 1 + 0 1
752 746 oveq1i 1 + 0 1 = 1 1
753 752 724 eqtri 1 + 0 1 = 1
754 751 753 eqtrdi φ ¬ C 0 k 0 S 0 k 1 + 0 C = 1
755 162 ffnd φ ¬ C 0 P Fn D
756 175 ffnd φ ¬ C 0 b D 1 + b C Fn D
757 43 a1i φ ¬ C 0 0 D P = x D k 0 S x k
758 simplr φ ¬ C 0 0 D x = 0 k 0 x = 0
759 758 fveq2d φ ¬ C 0 0 D x = 0 k 0 S x = S 0
760 759 fveq1d φ ¬ C 0 0 D x = 0 k 0 S x k = S 0 k
761 760 sumeq2dv φ ¬ C 0 0 D x = 0 k 0 S x k = k 0 S 0 k
762 simpr φ ¬ C 0 0 D 0 D
763 sumex k 0 S 0 k V
764 763 a1i φ ¬ C 0 0 D k 0 S 0 k V
765 757 761 762 764 fvmptd φ ¬ C 0 0 D P 0 = k 0 S 0 k
766 174 a1i φ ¬ C 0 0 D b D 1 + b C = x D 1 + x C
767 simpr φ ¬ C 0 0 D x = 0 x = 0
768 767 oveq2d φ ¬ C 0 0 D x = 0 1 + x = 1 + 0
769 768 oveq1d φ ¬ C 0 0 D x = 0 1 + x C = 1 + 0 C
770 ovexd φ ¬ C 0 0 D 1 + 0 C V
771 766 769 762 770 fvmptd φ ¬ C 0 0 D b D 1 + b C 0 = 1 + 0 C
772 755 756 183 183 184 765 771 ofval φ ¬ C 0 0 D P × f b D 1 + b C 0 = k 0 S 0 k 1 + 0 C
773 674 772 mpdan φ ¬ C 0 P × f b D 1 + b C 0 = k 0 S 0 k 1 + 0 C
774 193 fveq1i D × 1 0 = b D 1 0
775 186 fvconst2 0 D D × 1 0 = 1
776 674 775 syl φ ¬ C 0 D × 1 0 = 1
777 774 776 eqtr3id φ ¬ C 0 b D 1 0 = 1
778 754 773 777 3eqtr4d φ ¬ C 0 P × f b D 1 + b C 0 = b D 1 0
779 99 100 101 185 201 636 668 674 778 dv11cn φ ¬ C 0 P × f b D 1 + b C = b D 1
780 779 oveq1d φ ¬ C 0 P × f b D 1 + b C ÷ f b D 1 + b C = b D 1 ÷ f b D 1 + b C
781 nfv b 1 + x 0
782 106 781 nfim b φ ¬ C 0 x D 1 + x 0
783 172 neeq1d b = x 1 + b 0 1 + x 0
784 110 783 imbi12d b = x φ ¬ C 0 b D 1 + b 0 φ ¬ C 0 x D 1 + x 0
785 782 784 575 chvarfv φ ¬ C 0 x D 1 + x 0
786 166 785 168 cxpne0d φ ¬ C 0 x D 1 + x C 0
787 eldifsn 1 + x C 0 1 + x C 1 + x C 0
788 169 786 787 sylanbrc φ ¬ C 0 x D 1 + x C 0
789 788 174 fmptd φ ¬ C 0 b D 1 + b C : D 0
790 ofdivcan4 D V P : D b D 1 + b C : D 0 P × f b D 1 + b C ÷ f b D 1 + b C = P
791 183 162 789 790 syl3anc φ ¬ C 0 P × f b D 1 + b C ÷ f b D 1 + b C = P
792 eqidd φ ¬ C 0 b D 1 = b D 1
793 104 29 183 239 604 792 595 offval2f φ ¬ C 0 b D 1 ÷ f b D 1 + b C = b D 1 1 + b C
794 780 791 793 3eqtr3d φ ¬ C 0 P = b D 1 1 + b C
795 553 575 603 cxpnegd φ ¬ C 0 b D 1 + b C = 1 1 + b C
796 236 negnegd φ ¬ C 0 b D C = C
797 796 oveq2d φ ¬ C 0 b D 1 + b C = 1 + b C
798 795 797 eqtr3d φ ¬ C 0 b D 1 1 + b C = 1 + b C
799 798 mpteq2dva φ ¬ C 0 b D 1 1 + b C = b D 1 + b C
800 794 799 eqtrd φ ¬ C 0 P = b D 1 + b C
801 nfcv _ x 1 + b C
802 nfcv _ b 1 + x C
803 172 oveq1d b = x 1 + b C = 1 + x C
804 29 30 801 802 803 cbvmptf b D 1 + b C = x D 1 + x C
805 800 804 eqtrdi φ ¬ C 0 P = x D 1 + x C
806 simpr φ ¬ C 0 x = B A x = B A
807 806 oveq2d φ ¬ C 0 x = B A 1 + x = 1 + B A
808 807 oveq1d φ ¬ C 0 x = B A 1 + x C = 1 + B A C
809 1cnd φ ¬ C 0 1
810 809 63 addcld φ ¬ C 0 1 + B A
811 810 720 cxpcld φ ¬ C 0 1 + B A C
812 805 808 92 811 fvmptd φ ¬ C 0 P B A = 1 + B A C
813 704 adantlr φ ¬ C 0 b = B A k 0 F k = C C 𝑐 k
814 simplr φ ¬ C 0 b = B A k 0 b = B A
815 814 oveq1d φ ¬ C 0 b = B A k 0 b k = B A k
816 813 815 oveq12d φ ¬ C 0 b = B A k 0 F k b k = C C 𝑐 k B A k
817 816 mpteq2dva φ ¬ C 0 b = B A k 0 F k b k = k 0 C C 𝑐 k B A k
818 122 mptex k 0 C C 𝑐 k B A k V
819 818 a1i φ ¬ C 0 k 0 C C 𝑐 k B A k V
820 513 817 63 819 fvmptd φ ¬ C 0 S B A = k 0 C C 𝑐 k B A k
821 ovexd φ ¬ C 0 k 0 C C 𝑐 k B A k V
822 820 821 fvmpt2d φ ¬ C 0 k 0 S B A k = C C 𝑐 k B A k
823 822 sumeq2dv φ ¬ C 0 k 0 S B A k = k 0 C C 𝑐 k B A k
824 95 812 823 3eqtr3d φ ¬ C 0 1 + B A C = k 0 C C 𝑐 k B A k
825 824 oveq1d φ ¬ C 0 1 + B A C A C = k 0 C C 𝑐 k B A k A C
826 2 1 rerpdivcld φ B A
827 826 adantr φ ¬ C 0 B A
828 69 827 readdcld φ ¬ C 0 1 + B A
829 df-neg B A = 0 B A
830 826 recnd φ B A
831 830 negcld φ B A
832 831 abscld φ B A
833 1red φ 1
834 830 absnegd φ B A = B A
835 1 rpne0d φ A 0
836 49 51 835 absdivd φ B A = B A
837 834 836 eqtrd φ B A = B A
838 49 abscld φ B
839 669 a1i φ 1 +
840 51 835 absrpcld φ A +
841 838 recnd φ B
842 841 div1d φ B 1 = B
843 842 3 eqbrtrd φ B 1 < A
844 838 839 840 843 ltdiv23d φ B A < 1
845 837 844 eqbrtrd φ B A < 1
846 832 833 845 ltled φ B A 1
847 826 renegcld φ B A
848 847 833 absled φ B A 1 1 B A B A 1
849 846 848 mpbid φ 1 B A B A 1
850 849 simprd φ B A 1
851 829 850 eqbrtrrid φ 0 B A 1
852 0red φ 0
853 852 826 833 lesubaddd φ 0 B A 1 0 1 + B A
854 851 853 mpbid φ 0 1 + B A
855 854 adantr φ ¬ C 0 0 1 + B A
856 1 adantr φ ¬ C 0 A +
857 856 rpred φ ¬ C 0 A
858 856 rpge0d φ ¬ C 0 0 A
859 828 855 857 858 720 mulcxpd φ ¬ C 0 1 + B A A C = 1 + B A C A C
860 809 63 52 adddird φ ¬ C 0 1 + B A A = 1 A + B A A
861 52 mulid2d φ ¬ C 0 1 A = A
862 50 52 62 divcan1d φ ¬ C 0 B A A = B
863 861 862 oveq12d φ ¬ C 0 1 A + B A A = A + B
864 860 863 eqtrd φ ¬ C 0 1 + B A A = A + B
865 864 oveq1d φ ¬ C 0 1 + B A A C = A + B C
866 859 865 eqtr3d φ ¬ C 0 1 + B A C A C = A + B C
867 63 adantr φ ¬ C 0 k 0 B A
868 simpr φ ¬ C 0 k 0 k 0
869 867 868 expcld φ ¬ C 0 k 0 B A k
870 733 869 mulcld φ ¬ C 0 k 0 C C 𝑐 k B A k
871 1 2 3 4 5 6 7 8 9 binomcxplemcvg φ B A D seq 0 + S B A dom seq 1 + E B A dom
872 871 simpld φ B A D seq 0 + S B A dom
873 92 872 syldan φ ¬ C 0 seq 0 + S B A dom
874 52 720 cxpcld φ ¬ C 0 A C
875 113 675 822 870 873 874 isummulc1 φ ¬ C 0 k 0 C C 𝑐 k B A k A C = k 0 C C 𝑐 k B A k A C
876 49 ad2antrr φ ¬ C 0 k 0 B
877 51 ad2antrr φ ¬ C 0 k 0 A
878 835 ad2antrr φ ¬ C 0 k 0 A 0
879 876 877 878 divrecd φ ¬ C 0 k 0 B A = B 1 A
880 879 oveq1d φ ¬ C 0 k 0 B A k = B 1 A k
881 877 878 reccld φ ¬ C 0 k 0 1 A
882 876 881 868 mulexpd φ ¬ C 0 k 0 B 1 A k = B k 1 A k
883 880 882 eqtrd φ ¬ C 0 k 0 B A k = B k 1 A k
884 883 oveq2d φ ¬ C 0 k 0 C C 𝑐 k B A k = C C 𝑐 k B k 1 A k
885 876 868 expcld φ ¬ C 0 k 0 B k
886 881 868 expcld φ ¬ C 0 k 0 1 A k
887 733 885 886 mulassd φ ¬ C 0 k 0 C C 𝑐 k B k 1 A k = C C 𝑐 k B k 1 A k
888 884 887 eqtr4d φ ¬ C 0 k 0 C C 𝑐 k B A k = C C 𝑐 k B k 1 A k
889 888 oveq1d φ ¬ C 0 k 0 C C 𝑐 k B A k A C = C C 𝑐 k B k 1 A k A C
890 733 885 mulcld φ ¬ C 0 k 0 C C 𝑐 k B k
891 874 adantr φ ¬ C 0 k 0 A C
892 890 886 891 mul32d φ ¬ C 0 k 0 C C 𝑐 k B k 1 A k A C = C C 𝑐 k B k A C 1 A k
893 890 891 886 mulassd φ ¬ C 0 k 0 C C 𝑐 k B k A C 1 A k = C C 𝑐 k B k A C 1 A k
894 889 892 893 3eqtrd φ ¬ C 0 k 0 C C 𝑐 k B A k A C = C C 𝑐 k B k A C 1 A k
895 868 nn0cnd φ ¬ C 0 k 0 k
896 877 895 cxpcld φ ¬ C 0 k 0 A k
897 877 878 895 cxpne0d φ ¬ C 0 k 0 A k 0
898 891 896 897 divrecd φ ¬ C 0 k 0 A C A k = A C 1 A k
899 4 ad2antrr φ ¬ C 0 k 0 C
900 877 878 899 895 cxpsubd φ ¬ C 0 k 0 A C k = A C A k
901 868 nn0zd φ ¬ C 0 k 0 k
902 877 878 901 exprecd φ ¬ C 0 k 0 1 A k = 1 A k
903 cxpexp A k 0 A k = A k
904 877 868 903 syl2anc φ ¬ C 0 k 0 A k = A k
905 904 oveq2d φ ¬ C 0 k 0 1 A k = 1 A k
906 902 905 eqtr4d φ ¬ C 0 k 0 1 A k = 1 A k
907 906 oveq2d φ ¬ C 0 k 0 A C 1 A k = A C 1 A k
908 898 900 907 3eqtr4rd φ ¬ C 0 k 0 A C 1 A k = A C k
909 908 oveq2d φ ¬ C 0 k 0 C C 𝑐 k B k A C 1 A k = C C 𝑐 k B k A C k
910 899 895 subcld φ ¬ C 0 k 0 C k
911 877 910 cxpcld φ ¬ C 0 k 0 A C k
912 733 885 911 mul32d φ ¬ C 0 k 0 C C 𝑐 k B k A C k = C C 𝑐 k A C k B k
913 894 909 912 3eqtrd φ ¬ C 0 k 0 C C 𝑐 k B A k A C = C C 𝑐 k A C k B k
914 733 911 885 mulassd φ ¬ C 0 k 0 C C 𝑐 k A C k B k = C C 𝑐 k A C k B k
915 913 914 eqtrd φ ¬ C 0 k 0 C C 𝑐 k B A k A C = C C 𝑐 k A C k B k
916 915 sumeq2dv φ ¬ C 0 k 0 C C 𝑐 k B A k A C = k 0 C C 𝑐 k A C k B k
917 875 916 eqtrd φ ¬ C 0 k 0 C C 𝑐 k B A k A C = k 0 C C 𝑐 k A C k B k
918 825 866 917 3eqtr3d φ ¬ C 0 A + B C = k 0 C C 𝑐 k A C k B k