Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
binomcxplem.f |
|
6 |
|
binomcxplem.s |
|
7 |
|
binomcxplem.r |
|
8 |
|
binomcxplem.e |
|
9 |
|
binomcxplem.d |
|
10 |
4
|
adantr |
|
11 |
|
simpr |
|
12 |
10 11
|
bcccl |
|
13 |
12 5
|
fmptd |
|
14 |
13
|
adantr |
|
15 |
9
|
eleq2i |
|
16 |
|
absf |
|
17 |
|
ffn |
|
18 |
|
elpreima |
|
19 |
16 17 18
|
mp2b |
|
20 |
15 19
|
bitri |
|
21 |
20
|
simplbi |
|
22 |
21
|
adantl |
|
23 |
20
|
simprbi |
|
24 |
|
0re |
|
25 |
|
ssrab2 |
|
26 |
|
ressxr |
|
27 |
25 26
|
sstri |
|
28 |
|
supxrcl |
|
29 |
27 28
|
ax-mp |
|
30 |
7 29
|
eqeltri |
|
31 |
|
elico2 |
|
32 |
24 30 31
|
mp2an |
|
33 |
32
|
simp3bi |
|
34 |
23 33
|
syl |
|
35 |
34
|
adantl |
|
36 |
6 14 7 22 35
|
radcnvlt2 |
|
37 |
8
|
a1i |
|
38 |
|
simplr |
|
39 |
38
|
oveq1d |
|
40 |
39
|
oveq2d |
|
41 |
40
|
mpteq2dva |
|
42 |
|
simpr |
|
43 |
|
nnex |
|
44 |
43
|
mptex |
|
45 |
44
|
a1i |
|
46 |
37 41 42 45
|
fvmptd |
|
47 |
21 46
|
sylan2 |
|
48 |
47
|
seqeq3d |
|
49 |
|
eqid |
|
50 |
6 7 49 14 22 35
|
dvradcnv2 |
|
51 |
48 50
|
eqeltrd |
|
52 |
36 51
|
jca |
|