Metamath Proof Explorer


Theorem binomcxplemcvg

Description: Lemma for binomcxp . The sum in binomcxplemnn0 and its derivative (see the next theorem, binomcxplemdvsum ) converge, as long as their base J is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
binomcxplem.f F = j 0 C C 𝑐 j
binomcxplem.s S = b k 0 F k b k
binomcxplem.r R = sup r | seq 0 + S r dom * <
binomcxplem.e E = b k k F k b k 1
binomcxplem.d D = abs -1 0 R
Assertion binomcxplemcvg φ J D seq 0 + S J dom seq 1 + E J dom

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 binomcxplem.f F = j 0 C C 𝑐 j
6 binomcxplem.s S = b k 0 F k b k
7 binomcxplem.r R = sup r | seq 0 + S r dom * <
8 binomcxplem.e E = b k k F k b k 1
9 binomcxplem.d D = abs -1 0 R
10 4 adantr φ j 0 C
11 simpr φ j 0 j 0
12 10 11 bcccl φ j 0 C C 𝑐 j
13 12 5 fmptd φ F : 0
14 13 adantr φ J D F : 0
15 9 eleq2i J D J abs -1 0 R
16 absf abs :
17 ffn abs : abs Fn
18 elpreima abs Fn J abs -1 0 R J J 0 R
19 16 17 18 mp2b J abs -1 0 R J J 0 R
20 15 19 bitri J D J J 0 R
21 20 simplbi J D J
22 21 adantl φ J D J
23 20 simprbi J D J 0 R
24 0re 0
25 ssrab2 r | seq 0 + S r dom
26 ressxr *
27 25 26 sstri r | seq 0 + S r dom *
28 supxrcl r | seq 0 + S r dom * sup r | seq 0 + S r dom * < *
29 27 28 ax-mp sup r | seq 0 + S r dom * < *
30 7 29 eqeltri R *
31 elico2 0 R * J 0 R J 0 J J < R
32 24 30 31 mp2an J 0 R J 0 J J < R
33 32 simp3bi J 0 R J < R
34 23 33 syl J D J < R
35 34 adantl φ J D J < R
36 6 14 7 22 35 radcnvlt2 φ J D seq 0 + S J dom
37 8 a1i φ J E = b k k F k b k 1
38 simplr φ J b = J k b = J
39 38 oveq1d φ J b = J k b k 1 = J k 1
40 39 oveq2d φ J b = J k k F k b k 1 = k F k J k 1
41 40 mpteq2dva φ J b = J k k F k b k 1 = k k F k J k 1
42 simpr φ J J
43 nnex V
44 43 mptex k k F k J k 1 V
45 44 a1i φ J k k F k J k 1 V
46 37 41 42 45 fvmptd φ J E J = k k F k J k 1
47 21 46 sylan2 φ J D E J = k k F k J k 1
48 47 seqeq3d φ J D seq 1 + E J = seq 1 + k k F k J k 1
49 eqid k k F k J k 1 = k k F k J k 1
50 6 7 49 14 22 35 dvradcnv2 φ J D seq 1 + k k F k J k 1 dom
51 48 50 eqeltrd φ J D seq 1 + E J dom
52 36 51 jca φ J D seq 0 + S J dom seq 1 + E J dom