| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvradcnv2.g |
|
| 2 |
|
dvradcnv2.r |
|
| 3 |
|
dvradcnv2.h |
|
| 4 |
|
dvradcnv2.a |
|
| 5 |
|
dvradcnv2.x |
|
| 6 |
|
dvradcnv2.l |
|
| 7 |
|
0cn |
|
| 8 |
|
ax-1cn |
|
| 9 |
7 8
|
subnegi |
|
| 10 |
|
0p1e1 |
|
| 11 |
9 10
|
eqtri |
|
| 12 |
|
seqeq1 |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
|
ovex |
|
| 15 |
|
id |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
oveq12d |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
17 19
|
oveq12d |
|
| 21 |
|
nnuz |
|
| 22 |
|
nn0uz |
|
| 23 |
|
1pneg1e0 |
|
| 24 |
23
|
fveq2i |
|
| 25 |
22 24
|
eqtr4i |
|
| 26 |
|
1zzd |
|
| 27 |
26
|
znegcld |
|
| 28 |
3 14 20 21 25 26 27
|
uzmptshftfval |
|
| 29 |
|
nn0cn |
|
| 30 |
29
|
adantl |
|
| 31 |
|
1cnd |
|
| 32 |
30 31
|
subnegd |
|
| 33 |
32
|
fveq2d |
|
| 34 |
32 33
|
oveq12d |
|
| 35 |
32
|
oveq1d |
|
| 36 |
30 31
|
pncand |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
34 38
|
oveq12d |
|
| 40 |
39
|
mpteq2dva |
|
| 41 |
28 40
|
eqtrd |
|
| 42 |
41
|
seqeq3d |
|
| 43 |
|
fveq2 |
|
| 44 |
|
oveq2 |
|
| 45 |
43 44
|
oveq12d |
|
| 46 |
45
|
cbvmptv |
|
| 47 |
46
|
mpteq2i |
|
| 48 |
1 47
|
eqtri |
|
| 49 |
|
eqid |
|
| 50 |
48 2 49 4 5 6
|
dvradcnv |
|
| 51 |
42 50
|
eqeltrd |
|
| 52 |
|
climdm |
|
| 53 |
51 52
|
sylib |
|
| 54 |
|
0z |
|
| 55 |
|
neg1z |
|
| 56 |
|
nnex |
|
| 57 |
56
|
mptex |
|
| 58 |
3 57
|
eqeltri |
|
| 59 |
58
|
seqshft |
|
| 60 |
54 55 59
|
mp2an |
|
| 61 |
60
|
breq1i |
|
| 62 |
|
seqex |
|
| 63 |
|
climshft |
|
| 64 |
55 62 63
|
mp2an |
|
| 65 |
61 64
|
bitri |
|
| 66 |
|
fvex |
|
| 67 |
62 66
|
breldm |
|
| 68 |
65 67
|
sylbi |
|
| 69 |
53 68
|
syl |
|
| 70 |
13 69
|
eqeltrrid |
|