| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvradcnv2.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 2 |
|
dvradcnv2.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
| 3 |
|
dvradcnv2.h |
|- H = ( n e. NN |-> ( ( n x. ( A ` n ) ) x. ( X ^ ( n - 1 ) ) ) ) |
| 4 |
|
dvradcnv2.a |
|- ( ph -> A : NN0 --> CC ) |
| 5 |
|
dvradcnv2.x |
|- ( ph -> X e. CC ) |
| 6 |
|
dvradcnv2.l |
|- ( ph -> ( abs ` X ) < R ) |
| 7 |
|
0cn |
|- 0 e. CC |
| 8 |
|
ax-1cn |
|- 1 e. CC |
| 9 |
7 8
|
subnegi |
|- ( 0 - -u 1 ) = ( 0 + 1 ) |
| 10 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 11 |
9 10
|
eqtri |
|- ( 0 - -u 1 ) = 1 |
| 12 |
|
seqeq1 |
|- ( ( 0 - -u 1 ) = 1 -> seq ( 0 - -u 1 ) ( + , H ) = seq 1 ( + , H ) ) |
| 13 |
11 12
|
ax-mp |
|- seq ( 0 - -u 1 ) ( + , H ) = seq 1 ( + , H ) |
| 14 |
|
ovex |
|- ( ( n x. ( A ` n ) ) x. ( X ^ ( n - 1 ) ) ) e. _V |
| 15 |
|
id |
|- ( n = ( m - -u 1 ) -> n = ( m - -u 1 ) ) |
| 16 |
|
fveq2 |
|- ( n = ( m - -u 1 ) -> ( A ` n ) = ( A ` ( m - -u 1 ) ) ) |
| 17 |
15 16
|
oveq12d |
|- ( n = ( m - -u 1 ) -> ( n x. ( A ` n ) ) = ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) ) |
| 18 |
|
oveq1 |
|- ( n = ( m - -u 1 ) -> ( n - 1 ) = ( ( m - -u 1 ) - 1 ) ) |
| 19 |
18
|
oveq2d |
|- ( n = ( m - -u 1 ) -> ( X ^ ( n - 1 ) ) = ( X ^ ( ( m - -u 1 ) - 1 ) ) ) |
| 20 |
17 19
|
oveq12d |
|- ( n = ( m - -u 1 ) -> ( ( n x. ( A ` n ) ) x. ( X ^ ( n - 1 ) ) ) = ( ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) x. ( X ^ ( ( m - -u 1 ) - 1 ) ) ) ) |
| 21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 22 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 23 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
| 24 |
23
|
fveq2i |
|- ( ZZ>= ` ( 1 + -u 1 ) ) = ( ZZ>= ` 0 ) |
| 25 |
22 24
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 + -u 1 ) ) |
| 26 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 27 |
26
|
znegcld |
|- ( ph -> -u 1 e. ZZ ) |
| 28 |
3 14 20 21 25 26 27
|
uzmptshftfval |
|- ( ph -> ( H shift -u 1 ) = ( m e. NN0 |-> ( ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) x. ( X ^ ( ( m - -u 1 ) - 1 ) ) ) ) ) |
| 29 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> m e. CC ) |
| 31 |
|
1cnd |
|- ( ( ph /\ m e. NN0 ) -> 1 e. CC ) |
| 32 |
30 31
|
subnegd |
|- ( ( ph /\ m e. NN0 ) -> ( m - -u 1 ) = ( m + 1 ) ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( A ` ( m - -u 1 ) ) = ( A ` ( m + 1 ) ) ) |
| 34 |
32 33
|
oveq12d |
|- ( ( ph /\ m e. NN0 ) -> ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) = ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) ) |
| 35 |
32
|
oveq1d |
|- ( ( ph /\ m e. NN0 ) -> ( ( m - -u 1 ) - 1 ) = ( ( m + 1 ) - 1 ) ) |
| 36 |
30 31
|
pncand |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) - 1 ) = m ) |
| 37 |
35 36
|
eqtrd |
|- ( ( ph /\ m e. NN0 ) -> ( ( m - -u 1 ) - 1 ) = m ) |
| 38 |
37
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( X ^ ( ( m - -u 1 ) - 1 ) ) = ( X ^ m ) ) |
| 39 |
34 38
|
oveq12d |
|- ( ( ph /\ m e. NN0 ) -> ( ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) x. ( X ^ ( ( m - -u 1 ) - 1 ) ) ) = ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) |
| 40 |
39
|
mpteq2dva |
|- ( ph -> ( m e. NN0 |-> ( ( ( m - -u 1 ) x. ( A ` ( m - -u 1 ) ) ) x. ( X ^ ( ( m - -u 1 ) - 1 ) ) ) ) = ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) ) |
| 41 |
28 40
|
eqtrd |
|- ( ph -> ( H shift -u 1 ) = ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) ) |
| 42 |
41
|
seqeq3d |
|- ( ph -> seq 0 ( + , ( H shift -u 1 ) ) = seq 0 ( + , ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) ) ) |
| 43 |
|
fveq2 |
|- ( n = m -> ( A ` n ) = ( A ` m ) ) |
| 44 |
|
oveq2 |
|- ( n = m -> ( x ^ n ) = ( x ^ m ) ) |
| 45 |
43 44
|
oveq12d |
|- ( n = m -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` m ) x. ( x ^ m ) ) ) |
| 46 |
45
|
cbvmptv |
|- ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) |
| 47 |
46
|
mpteq2i |
|- ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) = ( x e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ) |
| 48 |
1 47
|
eqtri |
|- G = ( x e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ) |
| 49 |
|
eqid |
|- ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) = ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) |
| 50 |
48 2 49 4 5 6
|
dvradcnv |
|- ( ph -> seq 0 ( + , ( m e. NN0 |-> ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( X ^ m ) ) ) ) e. dom ~~> ) |
| 51 |
42 50
|
eqeltrd |
|- ( ph -> seq 0 ( + , ( H shift -u 1 ) ) e. dom ~~> ) |
| 52 |
|
climdm |
|- ( seq 0 ( + , ( H shift -u 1 ) ) e. dom ~~> <-> seq 0 ( + , ( H shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) |
| 53 |
51 52
|
sylib |
|- ( ph -> seq 0 ( + , ( H shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) |
| 54 |
|
0z |
|- 0 e. ZZ |
| 55 |
|
neg1z |
|- -u 1 e. ZZ |
| 56 |
|
nnex |
|- NN e. _V |
| 57 |
56
|
mptex |
|- ( n e. NN |-> ( ( n x. ( A ` n ) ) x. ( X ^ ( n - 1 ) ) ) ) e. _V |
| 58 |
3 57
|
eqeltri |
|- H e. _V |
| 59 |
58
|
seqshft |
|- ( ( 0 e. ZZ /\ -u 1 e. ZZ ) -> seq 0 ( + , ( H shift -u 1 ) ) = ( seq ( 0 - -u 1 ) ( + , H ) shift -u 1 ) ) |
| 60 |
54 55 59
|
mp2an |
|- seq 0 ( + , ( H shift -u 1 ) ) = ( seq ( 0 - -u 1 ) ( + , H ) shift -u 1 ) |
| 61 |
60
|
breq1i |
|- ( seq 0 ( + , ( H shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) <-> ( seq ( 0 - -u 1 ) ( + , H ) shift -u 1 ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) |
| 62 |
|
seqex |
|- seq ( 0 - -u 1 ) ( + , H ) e. _V |
| 63 |
|
climshft |
|- ( ( -u 1 e. ZZ /\ seq ( 0 - -u 1 ) ( + , H ) e. _V ) -> ( ( seq ( 0 - -u 1 ) ( + , H ) shift -u 1 ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) <-> seq ( 0 - -u 1 ) ( + , H ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) ) |
| 64 |
55 62 63
|
mp2an |
|- ( ( seq ( 0 - -u 1 ) ( + , H ) shift -u 1 ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) <-> seq ( 0 - -u 1 ) ( + , H ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) |
| 65 |
61 64
|
bitri |
|- ( seq 0 ( + , ( H shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) <-> seq ( 0 - -u 1 ) ( + , H ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) ) |
| 66 |
|
fvex |
|- ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) e. _V |
| 67 |
62 66
|
breldm |
|- ( seq ( 0 - -u 1 ) ( + , H ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) -> seq ( 0 - -u 1 ) ( + , H ) e. dom ~~> ) |
| 68 |
65 67
|
sylbi |
|- ( seq 0 ( + , ( H shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( H shift -u 1 ) ) ) -> seq ( 0 - -u 1 ) ( + , H ) e. dom ~~> ) |
| 69 |
53 68
|
syl |
|- ( ph -> seq ( 0 - -u 1 ) ( + , H ) e. dom ~~> ) |
| 70 |
13 69
|
eqeltrrid |
|- ( ph -> seq 1 ( + , H ) e. dom ~~> ) |