Step |
Hyp |
Ref |
Expression |
1 |
|
uzmptshftfval.f |
|- F = ( x e. Z |-> B ) |
2 |
|
uzmptshftfval.b |
|- B e. _V |
3 |
|
uzmptshftfval.c |
|- ( x = ( y - N ) -> B = C ) |
4 |
|
uzmptshftfval.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
uzmptshftfval.w |
|- W = ( ZZ>= ` ( M + N ) ) |
6 |
|
uzmptshftfval.m |
|- ( ph -> M e. ZZ ) |
7 |
|
uzmptshftfval.n |
|- ( ph -> N e. ZZ ) |
8 |
2 1
|
fnmpti |
|- F Fn Z |
9 |
7
|
zcnd |
|- ( ph -> N e. CC ) |
10 |
4
|
fvexi |
|- Z e. _V |
11 |
10
|
mptex |
|- ( x e. Z |-> B ) e. _V |
12 |
1 11
|
eqeltri |
|- F e. _V |
13 |
12
|
shftfn |
|- ( ( F Fn Z /\ N e. CC ) -> ( F shift N ) Fn { y e. CC | ( y - N ) e. Z } ) |
14 |
8 9 13
|
sylancr |
|- ( ph -> ( F shift N ) Fn { y e. CC | ( y - N ) e. Z } ) |
15 |
|
shftuz |
|- ( ( N e. ZZ /\ M e. ZZ ) -> { y e. CC | ( y - N ) e. ( ZZ>= ` M ) } = ( ZZ>= ` ( M + N ) ) ) |
16 |
7 6 15
|
syl2anc |
|- ( ph -> { y e. CC | ( y - N ) e. ( ZZ>= ` M ) } = ( ZZ>= ` ( M + N ) ) ) |
17 |
4
|
eleq2i |
|- ( ( y - N ) e. Z <-> ( y - N ) e. ( ZZ>= ` M ) ) |
18 |
17
|
rabbii |
|- { y e. CC | ( y - N ) e. Z } = { y e. CC | ( y - N ) e. ( ZZ>= ` M ) } |
19 |
16 18 5
|
3eqtr4g |
|- ( ph -> { y e. CC | ( y - N ) e. Z } = W ) |
20 |
19
|
fneq2d |
|- ( ph -> ( ( F shift N ) Fn { y e. CC | ( y - N ) e. Z } <-> ( F shift N ) Fn W ) ) |
21 |
14 20
|
mpbid |
|- ( ph -> ( F shift N ) Fn W ) |
22 |
|
dffn5 |
|- ( ( F shift N ) Fn W <-> ( F shift N ) = ( y e. W |-> ( ( F shift N ) ` y ) ) ) |
23 |
21 22
|
sylib |
|- ( ph -> ( F shift N ) = ( y e. W |-> ( ( F shift N ) ` y ) ) ) |
24 |
|
uzssz |
|- ( ZZ>= ` ( M + N ) ) C_ ZZ |
25 |
5 24
|
eqsstri |
|- W C_ ZZ |
26 |
|
zsscn |
|- ZZ C_ CC |
27 |
25 26
|
sstri |
|- W C_ CC |
28 |
27
|
sseli |
|- ( y e. W -> y e. CC ) |
29 |
12
|
shftval |
|- ( ( N e. CC /\ y e. CC ) -> ( ( F shift N ) ` y ) = ( F ` ( y - N ) ) ) |
30 |
9 28 29
|
syl2an |
|- ( ( ph /\ y e. W ) -> ( ( F shift N ) ` y ) = ( F ` ( y - N ) ) ) |
31 |
5
|
eleq2i |
|- ( y e. W <-> y e. ( ZZ>= ` ( M + N ) ) ) |
32 |
6 7
|
jca |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
33 |
|
eluzsub |
|- ( ( M e. ZZ /\ N e. ZZ /\ y e. ( ZZ>= ` ( M + N ) ) ) -> ( y - N ) e. ( ZZ>= ` M ) ) |
34 |
33
|
3expa |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ y e. ( ZZ>= ` ( M + N ) ) ) -> ( y - N ) e. ( ZZ>= ` M ) ) |
35 |
32 34
|
sylan |
|- ( ( ph /\ y e. ( ZZ>= ` ( M + N ) ) ) -> ( y - N ) e. ( ZZ>= ` M ) ) |
36 |
31 35
|
sylan2b |
|- ( ( ph /\ y e. W ) -> ( y - N ) e. ( ZZ>= ` M ) ) |
37 |
36 4
|
eleqtrrdi |
|- ( ( ph /\ y e. W ) -> ( y - N ) e. Z ) |
38 |
3 1 2
|
fvmpt3i |
|- ( ( y - N ) e. Z -> ( F ` ( y - N ) ) = C ) |
39 |
37 38
|
syl |
|- ( ( ph /\ y e. W ) -> ( F ` ( y - N ) ) = C ) |
40 |
30 39
|
eqtrd |
|- ( ( ph /\ y e. W ) -> ( ( F shift N ) ` y ) = C ) |
41 |
40
|
mpteq2dva |
|- ( ph -> ( y e. W |-> ( ( F shift N ) ` y ) ) = ( y e. W |-> C ) ) |
42 |
23 41
|
eqtrd |
|- ( ph -> ( F shift N ) = ( y e. W |-> C ) ) |