Step |
Hyp |
Ref |
Expression |
1 |
|
uzmptshftfval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) |
2 |
|
uzmptshftfval.b |
⊢ 𝐵 ∈ V |
3 |
|
uzmptshftfval.c |
⊢ ( 𝑥 = ( 𝑦 − 𝑁 ) → 𝐵 = 𝐶 ) |
4 |
|
uzmptshftfval.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
uzmptshftfval.w |
⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) |
6 |
|
uzmptshftfval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
uzmptshftfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
8 |
2 1
|
fnmpti |
⊢ 𝐹 Fn 𝑍 |
9 |
7
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
10 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐵 ) ∈ V |
12 |
1 11
|
eqeltri |
⊢ 𝐹 ∈ V |
13 |
12
|
shftfn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑁 ∈ ℂ ) → ( 𝐹 shift 𝑁 ) Fn { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ 𝑍 } ) |
14 |
8 9 13
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 shift 𝑁 ) Fn { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ 𝑍 } ) |
15 |
|
shftuz |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) } = ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) |
16 |
7 6 15
|
syl2anc |
⊢ ( 𝜑 → { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) } = ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) |
17 |
4
|
eleq2i |
⊢ ( ( 𝑦 − 𝑁 ) ∈ 𝑍 ↔ ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
18 |
17
|
rabbii |
⊢ { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ 𝑍 } = { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) } |
19 |
16 18 5
|
3eqtr4g |
⊢ ( 𝜑 → { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ 𝑍 } = 𝑊 ) |
20 |
19
|
fneq2d |
⊢ ( 𝜑 → ( ( 𝐹 shift 𝑁 ) Fn { 𝑦 ∈ ℂ ∣ ( 𝑦 − 𝑁 ) ∈ 𝑍 } ↔ ( 𝐹 shift 𝑁 ) Fn 𝑊 ) ) |
21 |
14 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 shift 𝑁 ) Fn 𝑊 ) |
22 |
|
dffn5 |
⊢ ( ( 𝐹 shift 𝑁 ) Fn 𝑊 ↔ ( 𝐹 shift 𝑁 ) = ( 𝑦 ∈ 𝑊 ↦ ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) ) ) |
23 |
21 22
|
sylib |
⊢ ( 𝜑 → ( 𝐹 shift 𝑁 ) = ( 𝑦 ∈ 𝑊 ↦ ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) ) ) |
24 |
|
uzssz |
⊢ ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ⊆ ℤ |
25 |
5 24
|
eqsstri |
⊢ 𝑊 ⊆ ℤ |
26 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
27 |
25 26
|
sstri |
⊢ 𝑊 ⊆ ℂ |
28 |
27
|
sseli |
⊢ ( 𝑦 ∈ 𝑊 → 𝑦 ∈ ℂ ) |
29 |
12
|
shftval |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) ) |
30 |
9 28 29
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑊 ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) ) |
31 |
5
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑊 ↔ 𝑦 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) |
32 |
6 7
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
33 |
|
eluzsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
33
|
3expa |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑦 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
35 |
32 34
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
36 |
31 35
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑊 ) → ( 𝑦 − 𝑁 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
37 |
36 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑊 ) → ( 𝑦 − 𝑁 ) ∈ 𝑍 ) |
38 |
3 1 2
|
fvmpt3i |
⊢ ( ( 𝑦 − 𝑁 ) ∈ 𝑍 → ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) = 𝐶 ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑦 − 𝑁 ) ) = 𝐶 ) |
40 |
30 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑊 ) → ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) = 𝐶 ) |
41 |
40
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑊 ↦ ( ( 𝐹 shift 𝑁 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝑊 ↦ 𝐶 ) ) |
42 |
23 41
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 shift 𝑁 ) = ( 𝑦 ∈ 𝑊 ↦ 𝐶 ) ) |