Step |
Hyp |
Ref |
Expression |
1 |
|
dvradcnv2.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
dvradcnv2.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
3 |
|
dvradcnv2.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 · ( 𝐴 ‘ 𝑛 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
4 |
|
dvradcnv2.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
5 |
|
dvradcnv2.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
6 |
|
dvradcnv2.l |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) |
7 |
|
0cn |
⊢ 0 ∈ ℂ |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
7 8
|
subnegi |
⊢ ( 0 − - 1 ) = ( 0 + 1 ) |
10 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
11 |
9 10
|
eqtri |
⊢ ( 0 − - 1 ) = 1 |
12 |
|
seqeq1 |
⊢ ( ( 0 − - 1 ) = 1 → seq ( 0 − - 1 ) ( + , 𝐻 ) = seq 1 ( + , 𝐻 ) ) |
13 |
11 12
|
ax-mp |
⊢ seq ( 0 − - 1 ) ( + , 𝐻 ) = seq 1 ( + , 𝐻 ) |
14 |
|
ovex |
⊢ ( ( 𝑛 · ( 𝐴 ‘ 𝑛 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ∈ V |
15 |
|
id |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → 𝑛 = ( 𝑚 − - 1 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → ( 𝑛 · ( 𝐴 ‘ 𝑛 ) ) = ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → ( 𝑛 − 1 ) = ( ( 𝑚 − - 1 ) − 1 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) = ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) ) |
20 |
17 19
|
oveq12d |
⊢ ( 𝑛 = ( 𝑚 − - 1 ) → ( ( 𝑛 · ( 𝐴 ‘ 𝑛 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) = ( ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) · ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) ) ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
23 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
24 |
23
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 + - 1 ) ) = ( ℤ≥ ‘ 0 ) |
25 |
22 24
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 + - 1 ) ) |
26 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
27 |
26
|
znegcld |
⊢ ( 𝜑 → - 1 ∈ ℤ ) |
28 |
3 14 20 21 25 26 27
|
uzmptshftfval |
⊢ ( 𝜑 → ( 𝐻 shift - 1 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) · ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) ) ) ) |
29 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
31 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 1 ∈ ℂ ) |
32 |
30 31
|
subnegd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 − - 1 ) = ( 𝑚 + 1 ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ ( 𝑚 − - 1 ) ) = ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) |
34 |
32 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) = ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) ) |
35 |
32
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 − - 1 ) − 1 ) = ( ( 𝑚 + 1 ) − 1 ) ) |
36 |
30 31
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
37 |
35 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 − - 1 ) − 1 ) = 𝑚 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) = ( 𝑋 ↑ 𝑚 ) ) |
39 |
34 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) · ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) ) = ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) |
40 |
39
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 − - 1 ) · ( 𝐴 ‘ ( 𝑚 − - 1 ) ) ) · ( 𝑋 ↑ ( ( 𝑚 − - 1 ) − 1 ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
41 |
28 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 shift - 1 ) = ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
42 |
41
|
seqeq3d |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐻 shift - 1 ) ) = seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) ) ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑚 ) ) |
44 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑚 ) ) |
45 |
43 44
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
46 |
45
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) |
47 |
46
|
mpteq2i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) |
48 |
1 47
|
eqtri |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) |
49 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) |
50 |
48 2 49 4 5 6
|
dvradcnv |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( ( 𝑚 + 1 ) · ( 𝐴 ‘ ( 𝑚 + 1 ) ) ) · ( 𝑋 ↑ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
51 |
42 50
|
eqeltrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐻 shift - 1 ) ) ∈ dom ⇝ ) |
52 |
|
climdm |
⊢ ( seq 0 ( + , ( 𝐻 shift - 1 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐻 shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) |
53 |
51 52
|
sylib |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐻 shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) |
54 |
|
0z |
⊢ 0 ∈ ℤ |
55 |
|
neg1z |
⊢ - 1 ∈ ℤ |
56 |
|
nnex |
⊢ ℕ ∈ V |
57 |
56
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 · ( 𝐴 ‘ 𝑛 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ∈ V |
58 |
3 57
|
eqeltri |
⊢ 𝐻 ∈ V |
59 |
58
|
seqshft |
⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → seq 0 ( + , ( 𝐻 shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , 𝐻 ) shift - 1 ) ) |
60 |
54 55 59
|
mp2an |
⊢ seq 0 ( + , ( 𝐻 shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , 𝐻 ) shift - 1 ) |
61 |
60
|
breq1i |
⊢ ( seq 0 ( + , ( 𝐻 shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ↔ ( seq ( 0 − - 1 ) ( + , 𝐻 ) shift - 1 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) |
62 |
|
seqex |
⊢ seq ( 0 − - 1 ) ( + , 𝐻 ) ∈ V |
63 |
|
climshft |
⊢ ( ( - 1 ∈ ℤ ∧ seq ( 0 − - 1 ) ( + , 𝐻 ) ∈ V ) → ( ( seq ( 0 − - 1 ) ( + , 𝐻 ) shift - 1 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ↔ seq ( 0 − - 1 ) ( + , 𝐻 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) ) |
64 |
55 62 63
|
mp2an |
⊢ ( ( seq ( 0 − - 1 ) ( + , 𝐻 ) shift - 1 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ↔ seq ( 0 − - 1 ) ( + , 𝐻 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) |
65 |
61 64
|
bitri |
⊢ ( seq 0 ( + , ( 𝐻 shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ↔ seq ( 0 − - 1 ) ( + , 𝐻 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ) |
66 |
|
fvex |
⊢ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) ∈ V |
67 |
62 66
|
breldm |
⊢ ( seq ( 0 − - 1 ) ( + , 𝐻 ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) → seq ( 0 − - 1 ) ( + , 𝐻 ) ∈ dom ⇝ ) |
68 |
65 67
|
sylbi |
⊢ ( seq 0 ( + , ( 𝐻 shift - 1 ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝐻 shift - 1 ) ) ) → seq ( 0 − - 1 ) ( + , 𝐻 ) ∈ dom ⇝ ) |
69 |
53 68
|
syl |
⊢ ( 𝜑 → seq ( 0 − - 1 ) ( + , 𝐻 ) ∈ dom ⇝ ) |
70 |
13 69
|
eqeltrrid |
⊢ ( 𝜑 → seq 1 ( + , 𝐻 ) ∈ dom ⇝ ) |