Metamath Proof Explorer


Theorem uzmptshftfval

Description: When F is a maps-to function on some set of upper integers Z that returns a set B , ( F shift N ) is another maps-to function on the shifted set of upper integers W . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses uzmptshftfval.f F=xZB
uzmptshftfval.b BV
uzmptshftfval.c x=yNB=C
uzmptshftfval.z Z=M
uzmptshftfval.w W=M+N
uzmptshftfval.m φM
uzmptshftfval.n φN
Assertion uzmptshftfval φFshiftN=yWC

Proof

Step Hyp Ref Expression
1 uzmptshftfval.f F=xZB
2 uzmptshftfval.b BV
3 uzmptshftfval.c x=yNB=C
4 uzmptshftfval.z Z=M
5 uzmptshftfval.w W=M+N
6 uzmptshftfval.m φM
7 uzmptshftfval.n φN
8 2 1 fnmpti FFnZ
9 7 zcnd φN
10 4 fvexi ZV
11 10 mptex xZBV
12 1 11 eqeltri FV
13 12 shftfn FFnZNFshiftNFny|yNZ
14 8 9 13 sylancr φFshiftNFny|yNZ
15 shftuz NMy|yNM=M+N
16 7 6 15 syl2anc φy|yNM=M+N
17 4 eleq2i yNZyNM
18 17 rabbii y|yNZ=y|yNM
19 16 18 5 3eqtr4g φy|yNZ=W
20 19 fneq2d φFshiftNFny|yNZFshiftNFnW
21 14 20 mpbid φFshiftNFnW
22 dffn5 FshiftNFnWFshiftN=yWFshiftNy
23 21 22 sylib φFshiftN=yWFshiftNy
24 uzssz M+N
25 5 24 eqsstri W
26 zsscn
27 25 26 sstri W
28 27 sseli yWy
29 12 shftval NyFshiftNy=FyN
30 9 28 29 syl2an φyWFshiftNy=FyN
31 5 eleq2i yWyM+N
32 6 7 jca φMN
33 eluzsub MNyM+NyNM
34 33 3expa MNyM+NyNM
35 32 34 sylan φyM+NyNM
36 31 35 sylan2b φyWyNM
37 36 4 eleqtrrdi φyWyNZ
38 3 1 2 fvmpt3i yNZFyN=C
39 37 38 syl φyWFyN=C
40 30 39 eqtrd φyWFshiftNy=C
41 40 mpteq2dva φyWFshiftNy=yWC
42 23 41 eqtrd φFshiftN=yWC