Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
binomcxp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
binomcxp.lt |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
4 |
|
binomcxp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
binomcxplem.f |
⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) |
6 |
|
binomcxplem.s |
⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
7 |
|
binomcxplem.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
8 |
|
binomcxplem.e |
⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
12 |
10 11
|
bcccl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑗 ) ∈ ℂ ) |
13 |
12 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → 𝐹 : ℕ0 ⟶ ℂ ) |
15 |
9
|
eleq2i |
⊢ ( 𝐽 ∈ 𝐷 ↔ 𝐽 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
16 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
17 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
18 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝐽 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝐽 ∈ ℂ ∧ ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
19 |
16 17 18
|
mp2b |
⊢ ( 𝐽 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝐽 ∈ ℂ ∧ ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ) ) |
20 |
15 19
|
bitri |
⊢ ( 𝐽 ∈ 𝐷 ↔ ( 𝐽 ∈ ℂ ∧ ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ) ) |
21 |
20
|
simplbi |
⊢ ( 𝐽 ∈ 𝐷 → 𝐽 ∈ ℂ ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → 𝐽 ∈ ℂ ) |
23 |
20
|
simprbi |
⊢ ( 𝐽 ∈ 𝐷 → ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ) |
24 |
|
0re |
⊢ 0 ∈ ℝ |
25 |
|
ssrab2 |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ |
26 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
27 |
25 26
|
sstri |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
28 |
|
supxrcl |
⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
29 |
27 28
|
ax-mp |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* |
30 |
7 29
|
eqeltri |
⊢ 𝑅 ∈ ℝ* |
31 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝐽 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐽 ) ∧ ( abs ‘ 𝐽 ) < 𝑅 ) ) ) |
32 |
24 30 31
|
mp2an |
⊢ ( ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝐽 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐽 ) ∧ ( abs ‘ 𝐽 ) < 𝑅 ) ) |
33 |
32
|
simp3bi |
⊢ ( ( abs ‘ 𝐽 ) ∈ ( 0 [,) 𝑅 ) → ( abs ‘ 𝐽 ) < 𝑅 ) |
34 |
23 33
|
syl |
⊢ ( 𝐽 ∈ 𝐷 → ( abs ‘ 𝐽 ) < 𝑅 ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → ( abs ‘ 𝐽 ) < 𝑅 ) |
36 |
6 14 7 22 35
|
radcnvlt2 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝐽 ) ) ∈ dom ⇝ ) |
37 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) → 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
38 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) ∧ 𝑏 = 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝑏 = 𝐽 ) |
39 |
38
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) ∧ 𝑏 = 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) ∧ 𝑏 = 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) |
41 |
40
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) ∧ 𝑏 = 𝐽 ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) → 𝐽 ∈ ℂ ) |
43 |
|
nnex |
⊢ ℕ ∈ V |
44 |
43
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
46 |
37 41 42 45
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℂ ) → ( 𝐸 ‘ 𝐽 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ) |
47 |
21 46
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → ( 𝐸 ‘ 𝐽 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ) |
48 |
47
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝐽 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
49 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) |
50 |
6 7 49 14 22 35
|
dvradcnv2 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝐽 ↑ ( 𝑘 − 1 ) ) ) ) ) ∈ dom ⇝ ) |
51 |
48 50
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝐽 ) ) ∈ dom ⇝ ) |
52 |
36 51
|
jca |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝐽 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝐽 ) ) ∈ dom ⇝ ) ) |