| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binomcxp.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | binomcxp.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | binomcxp.lt | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  <  ( abs ‘ 𝐴 ) ) | 
						
							| 4 |  | binomcxp.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | binomcxplem.f | ⊢ 𝐹  =  ( 𝑗  ∈  ℕ0  ↦  ( 𝐶 C𝑐 𝑗 ) ) | 
						
							| 6 |  | binomcxplem.s | ⊢ 𝑆  =  ( 𝑏  ∈  ℂ  ↦  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝑏 ↑ 𝑘 ) ) ) ) | 
						
							| 7 |  | binomcxplem.r | ⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) | 
						
							| 8 |  | binomcxplem.e | ⊢ 𝐸  =  ( 𝑏  ∈  ℂ  ↦  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝑏 ↑ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 9 |  | binomcxplem.d | ⊢ 𝐷  =  ( ◡ abs  “  ( 0 [,) 𝑅 ) ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  𝐶  ∈  ℂ ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 12 | 10 11 | bcccl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐶 C𝑐 𝑗 )  ∈  ℂ ) | 
						
							| 13 | 12 5 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℕ0 ⟶ ℂ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  𝐹 : ℕ0 ⟶ ℂ ) | 
						
							| 15 | 9 | eleq2i | ⊢ ( 𝐽  ∈  𝐷  ↔  𝐽  ∈  ( ◡ abs  “  ( 0 [,) 𝑅 ) ) ) | 
						
							| 16 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 17 |  | ffn | ⊢ ( abs : ℂ ⟶ ℝ  →  abs  Fn  ℂ ) | 
						
							| 18 |  | elpreima | ⊢ ( abs  Fn  ℂ  →  ( 𝐽  ∈  ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ↔  ( 𝐽  ∈  ℂ  ∧  ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 ) ) ) ) | 
						
							| 19 | 16 17 18 | mp2b | ⊢ ( 𝐽  ∈  ( ◡ abs  “  ( 0 [,) 𝑅 ) )  ↔  ( 𝐽  ∈  ℂ  ∧  ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 ) ) ) | 
						
							| 20 | 15 19 | bitri | ⊢ ( 𝐽  ∈  𝐷  ↔  ( 𝐽  ∈  ℂ  ∧  ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 ) ) ) | 
						
							| 21 | 20 | simplbi | ⊢ ( 𝐽  ∈  𝐷  →  𝐽  ∈  ℂ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  𝐽  ∈  ℂ ) | 
						
							| 23 | 20 | simprbi | ⊢ ( 𝐽  ∈  𝐷  →  ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 ) ) | 
						
							| 24 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 25 |  | ssrab2 | ⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ | 
						
							| 26 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 27 | 25 26 | sstri | ⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ* | 
						
							| 28 |  | supxrcl | ⊢ ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ*  →  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝑆 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  )  ∈  ℝ* | 
						
							| 30 | 7 29 | eqeltri | ⊢ 𝑅  ∈  ℝ* | 
						
							| 31 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑅  ∈  ℝ* )  →  ( ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 )  ↔  ( ( abs ‘ 𝐽 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐽 )  ∧  ( abs ‘ 𝐽 )  <  𝑅 ) ) ) | 
						
							| 32 | 24 30 31 | mp2an | ⊢ ( ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 )  ↔  ( ( abs ‘ 𝐽 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐽 )  ∧  ( abs ‘ 𝐽 )  <  𝑅 ) ) | 
						
							| 33 | 32 | simp3bi | ⊢ ( ( abs ‘ 𝐽 )  ∈  ( 0 [,) 𝑅 )  →  ( abs ‘ 𝐽 )  <  𝑅 ) | 
						
							| 34 | 23 33 | syl | ⊢ ( 𝐽  ∈  𝐷  →  ( abs ‘ 𝐽 )  <  𝑅 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  ( abs ‘ 𝐽 )  <  𝑅 ) | 
						
							| 36 | 6 14 7 22 35 | radcnvlt2 | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  seq 0 (  +  ,  ( 𝑆 ‘ 𝐽 ) )  ∈  dom   ⇝  ) | 
						
							| 37 | 8 | a1i | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ℂ )  →  𝐸  =  ( 𝑏  ∈  ℂ  ↦  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝑏 ↑ ( 𝑘  −  1 ) ) ) ) ) ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐽  ∈  ℂ )  ∧  𝑏  =  𝐽 )  ∧  𝑘  ∈  ℕ )  →  𝑏  =  𝐽 ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐽  ∈  ℂ )  ∧  𝑏  =  𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑏 ↑ ( 𝑘  −  1 ) )  =  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐽  ∈  ℂ )  ∧  𝑏  =  𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝑏 ↑ ( 𝑘  −  1 ) ) )  =  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) | 
						
							| 41 | 40 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝐽  ∈  ℂ )  ∧  𝑏  =  𝐽 )  →  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝑏 ↑ ( 𝑘  −  1 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ℂ )  →  𝐽  ∈  ℂ ) | 
						
							| 43 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 44 | 43 | mptex | ⊢ ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) )  ∈  V | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ℂ )  →  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) )  ∈  V ) | 
						
							| 46 | 37 41 42 45 | fvmptd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ℂ )  →  ( 𝐸 ‘ 𝐽 )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 47 | 21 46 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  ( 𝐸 ‘ 𝐽 )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 48 | 47 | seqeq3d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  seq 1 (  +  ,  ( 𝐸 ‘ 𝐽 ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) | 
						
							| 50 | 6 7 49 14 22 35 | dvradcnv2 | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( ( 𝑘  ·  ( 𝐹 ‘ 𝑘 ) )  ·  ( 𝐽 ↑ ( 𝑘  −  1 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 51 | 48 50 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  seq 1 (  +  ,  ( 𝐸 ‘ 𝐽 ) )  ∈  dom   ⇝  ) | 
						
							| 52 | 36 51 | jca | ⊢ ( ( 𝜑  ∧  𝐽  ∈  𝐷 )  →  ( seq 0 (  +  ,  ( 𝑆 ‘ 𝐽 ) )  ∈  dom   ⇝   ∧  seq 1 (  +  ,  ( 𝐸 ‘ 𝐽 ) )  ∈  dom   ⇝  ) ) |