Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
binomcxp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
binomcxp.lt |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
4 |
|
binomcxp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
binomcxplem.f |
⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) |
6 |
|
binomcxplem.s |
⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
7 |
|
binomcxplem.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
8 |
|
binomcxplem.e |
⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
10 |
|
binomcxplem.p |
⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑏 ◡ abs |
12 |
|
nfcv |
⊢ Ⅎ 𝑏 0 |
13 |
|
nfcv |
⊢ Ⅎ 𝑏 [,) |
14 |
|
nfcv |
⊢ Ⅎ 𝑏 + |
15 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
16 |
6 15
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑆 |
17 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑟 |
18 |
16 17
|
nffv |
⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑟 ) |
19 |
12 14 18
|
nfseq |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) |
20 |
19
|
nfel1 |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
21 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ |
22 |
20 21
|
nfrabw |
⊢ Ⅎ 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } |
23 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ* |
24 |
|
nfcv |
⊢ Ⅎ 𝑏 < |
25 |
22 23 24
|
nfsup |
⊢ Ⅎ 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
26 |
7 25
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑅 |
27 |
12 13 26
|
nfov |
⊢ Ⅎ 𝑏 ( 0 [,) 𝑅 ) |
28 |
11 27
|
nfima |
⊢ Ⅎ 𝑏 ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
29 |
9 28
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐷 |
30 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
31 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑏 ℕ0 |
33 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑦 |
34 |
16 33
|
nffv |
⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑦 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑚 |
36 |
34 35
|
nffv |
⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
37 |
32 36
|
nfsum |
⊢ Ⅎ 𝑏 Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
38 |
|
simpl |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 𝑦 ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝑦 ) ) |
40 |
39
|
fveq1d |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) ) |
41 |
40
|
sumeq2dv |
⊢ ( 𝑏 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) |
43 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
44 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
45 |
43 44
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
46 |
6 45
|
nfcxfr |
⊢ Ⅎ 𝑘 𝑆 |
47 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
48 |
46 47
|
nffv |
⊢ Ⅎ 𝑘 ( 𝑆 ‘ 𝑦 ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
50 |
48 49
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
51 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
52 |
42 50 51
|
cbvsumi |
⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
53 |
41 52
|
eqtrdi |
⊢ ( 𝑏 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
54 |
29 30 31 37 53
|
cbvmptf |
⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
55 |
10 54
|
eqtri |
⊢ 𝑃 = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
56 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑗 ) ∈ V ) |
57 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
58 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
60 |
59
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 𝑘 ) ) |
61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
62 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
63 |
62 61
|
bcccl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
64 |
58 60 61 63
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
65 |
64 63
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
66 |
56 57 65
|
fmpt2d |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℂ ) |
67 |
|
nfcv |
⊢ Ⅎ 𝑟 ℝ |
68 |
|
nfcv |
⊢ Ⅎ 𝑧 ℝ |
69 |
|
nfv |
⊢ Ⅎ 𝑧 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
70 |
|
nfcv |
⊢ Ⅎ 𝑟 0 |
71 |
|
nfcv |
⊢ Ⅎ 𝑟 + |
72 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
73 |
6 72
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑆 |
74 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑧 |
75 |
73 74
|
nffv |
⊢ Ⅎ 𝑟 ( 𝑆 ‘ 𝑧 ) |
76 |
70 71 75
|
nfseq |
⊢ Ⅎ 𝑟 seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) |
77 |
76
|
nfel1 |
⊢ Ⅎ 𝑟 seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ |
78 |
|
fveq2 |
⊢ ( 𝑟 = 𝑧 → ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑧 ) ) |
79 |
78
|
seqeq3d |
⊢ ( 𝑟 = 𝑧 → seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ) |
80 |
79
|
eleq1d |
⊢ ( 𝑟 = 𝑧 → ( seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ ) ) |
81 |
67 68 69 77 80
|
cbvrabw |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } |
82 |
81
|
supeq1i |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
83 |
7 82
|
eqtri |
⊢ 𝑅 = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
84 |
6
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) |
85 |
|
seqeq3 |
⊢ ( ( 𝑆 ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) → seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ) |
86 |
84 85
|
ax-mp |
⊢ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) |
87 |
86
|
eleq1i |
⊢ ( seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ) |
88 |
87
|
rabbii |
⊢ { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
89 |
88
|
supeq1i |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
90 |
7 82 89
|
3eqtrri |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = 𝑅 |
91 |
90
|
eleq1i |
⊢ ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ↔ 𝑅 ∈ ℝ ) |
92 |
90
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) = ( ( abs ‘ 𝑥 ) + 𝑅 ) |
93 |
92
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + 𝑅 ) / 2 ) |
94 |
|
eqid |
⊢ ( ( abs ‘ 𝑥 ) + 1 ) = ( ( abs ‘ 𝑥 ) + 1 ) |
95 |
91 93 94
|
ifbieq12i |
⊢ if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) |
96 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 ↑ 𝑘 ) = ( 𝑏 ↑ 𝑘 ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
98 |
97
|
mpteq2dv |
⊢ ( 𝑤 = 𝑏 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
99 |
98
|
cbvmptv |
⊢ ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
100 |
99
|
fveq1i |
⊢ ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) |
101 |
|
seqeq3 |
⊢ ( ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) → seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ) |
102 |
100 101
|
ax-mp |
⊢ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) |
103 |
102
|
eleq1i |
⊢ ( seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ) |
104 |
103
|
rabbii |
⊢ { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
105 |
104
|
supeq1i |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
106 |
105
|
eleq1i |
⊢ ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ↔ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ) |
107 |
105
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) = ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
108 |
107
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) |
109 |
106 108 94
|
ifbieq12i |
⊢ if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) = if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) |
110 |
109
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) = ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
111 |
110
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) |
112 |
111
|
oveq2i |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) ) |
113 |
6 55 66 83 9 95 112
|
pserdv2 |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
114 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
115 |
9 114
|
eqsstri |
⊢ 𝐷 ⊆ dom abs |
116 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
117 |
116
|
fdmi |
⊢ dom abs = ℂ |
118 |
115 117
|
sseqtri |
⊢ 𝐷 ⊆ ℂ |
119 |
118
|
sseli |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ ℂ ) |
120 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
121 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → 𝑏 = 𝑦 ) |
122 |
121
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) |
123 |
122
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) |
124 |
123
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
126 |
|
nnex |
⊢ ℕ ∈ V |
127 |
126
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
129 |
120 124 125 128
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
131 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) |
132 |
131
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
133 |
131 132
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) ) |
134 |
131
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) |
135 |
134
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
136 |
133 135
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
137 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
138 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V ) |
139 |
130 136 137 138
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
140 |
139
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
141 |
119 140
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
142 |
141
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
143 |
113 142
|
eqtr4d |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) ) |
144 |
|
nfcv |
⊢ Ⅎ 𝑏 ℕ |
145 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
146 |
8 145
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐸 |
147 |
146 33
|
nffv |
⊢ Ⅎ 𝑏 ( 𝐸 ‘ 𝑦 ) |
148 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑛 |
149 |
147 148
|
nffv |
⊢ Ⅎ 𝑏 ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) |
150 |
144 149
|
nfsum |
⊢ Ⅎ 𝑏 Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) |
151 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
152 |
|
simpl |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → 𝑦 = 𝑏 ) |
153 |
152
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑏 ) ) |
154 |
153
|
fveq1d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) ) |
155 |
154
|
sumeq2dv |
⊢ ( 𝑦 = 𝑏 → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) ) |
156 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
157 |
43 156
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
158 |
8 157
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐸 |
159 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑏 |
160 |
158 159
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐸 ‘ 𝑏 ) |
161 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑛 |
162 |
160 161
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) |
163 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
164 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
165 |
162 163 164
|
cbvsumi |
⊢ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
166 |
155 165
|
eqtrdi |
⊢ ( 𝑦 = 𝑏 → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
167 |
30 29 150 151 166
|
cbvmptf |
⊢ ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
168 |
143 167
|
eqtrdi |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |