| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
binomcxp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
binomcxp.lt |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
| 4 |
|
binomcxp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 5 |
|
binomcxplem.f |
⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) |
| 6 |
|
binomcxplem.s |
⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 7 |
|
binomcxplem.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 8 |
|
binomcxplem.e |
⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 9 |
|
binomcxplem.d |
⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
| 10 |
|
binomcxplem.p |
⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑏 ◡ abs |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑏 0 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑏 [,) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑏 + |
| 15 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 16 |
6 15
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑆 |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑟 |
| 18 |
16 17
|
nffv |
⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑟 ) |
| 19 |
12 14 18
|
nfseq |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) |
| 20 |
19
|
nfel1 |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ |
| 22 |
20 21
|
nfrabw |
⊢ Ⅎ 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ* |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑏 < |
| 25 |
22 23 24
|
nfsup |
⊢ Ⅎ 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 26 |
7 25
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑅 |
| 27 |
12 13 26
|
nfov |
⊢ Ⅎ 𝑏 ( 0 [,) 𝑅 ) |
| 28 |
11 27
|
nfima |
⊢ Ⅎ 𝑏 ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
| 29 |
9 28
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐷 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑏 ℕ0 |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑦 |
| 34 |
16 33
|
nffv |
⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑦 ) |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑚 |
| 36 |
34 35
|
nffv |
⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
| 37 |
32 36
|
nfsum |
⊢ Ⅎ 𝑏 Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
| 38 |
|
simpl |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 𝑦 ) |
| 39 |
38
|
fveq2d |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 40 |
39
|
fveq1d |
⊢ ( ( 𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 41 |
40
|
sumeq2dv |
⊢ ( 𝑏 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) |
| 44 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
| 45 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 46 |
44 45
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 47 |
6 46
|
nfcxfr |
⊢ Ⅎ 𝑘 𝑆 |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
| 49 |
47 48
|
nffv |
⊢ Ⅎ 𝑘 ( 𝑆 ‘ 𝑦 ) |
| 50 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
| 51 |
49 50
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
| 52 |
42 43 51
|
cbvsum |
⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑘 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) |
| 53 |
41 52
|
eqtrdi |
⊢ ( 𝑏 = 𝑦 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 54 |
29 30 31 37 53
|
cbvmptf |
⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 55 |
10 54
|
eqtri |
⊢ 𝑃 = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑚 ∈ ℕ0 ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑚 ) ) |
| 56 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑗 ) ∈ V ) |
| 57 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
| 58 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 62 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 63 |
62 61
|
bcccl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 64 |
58 60 61 63
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 65 |
64 63
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 66 |
56 57 65
|
fmpt2d |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℂ ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑟 ℝ |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑧 ℝ |
| 69 |
|
nfv |
⊢ Ⅎ 𝑧 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
| 70 |
|
nfcv |
⊢ Ⅎ 𝑟 0 |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑟 + |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 73 |
6 72
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑆 |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑧 |
| 75 |
73 74
|
nffv |
⊢ Ⅎ 𝑟 ( 𝑆 ‘ 𝑧 ) |
| 76 |
70 71 75
|
nfseq |
⊢ Ⅎ 𝑟 seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) |
| 77 |
76
|
nfel1 |
⊢ Ⅎ 𝑟 seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ |
| 78 |
|
fveq2 |
⊢ ( 𝑟 = 𝑧 → ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑧 ) ) |
| 79 |
78
|
seqeq3d |
⊢ ( 𝑟 = 𝑧 → seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ) |
| 80 |
79
|
eleq1d |
⊢ ( 𝑟 = 𝑧 → ( seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ ) ) |
| 81 |
67 68 69 77 80
|
cbvrabw |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } |
| 82 |
81
|
supeq1i |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 83 |
7 82
|
eqtri |
⊢ 𝑅 = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 84 |
6
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) |
| 85 |
|
seqeq3 |
⊢ ( ( 𝑆 ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) → seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ) |
| 86 |
84 85
|
ax-mp |
⊢ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) |
| 87 |
86
|
eleq1i |
⊢ ( seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ) |
| 88 |
87
|
rabbii |
⊢ { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
| 89 |
88
|
supeq1i |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 90 |
7 82 89
|
3eqtrri |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = 𝑅 |
| 91 |
90
|
eleq1i |
⊢ ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ↔ 𝑅 ∈ ℝ ) |
| 92 |
90
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) = ( ( abs ‘ 𝑥 ) + 𝑅 ) |
| 93 |
92
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + 𝑅 ) / 2 ) |
| 94 |
|
eqid |
⊢ ( ( abs ‘ 𝑥 ) + 1 ) = ( ( abs ‘ 𝑥 ) + 1 ) |
| 95 |
91 93 94
|
ifbieq12i |
⊢ if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) = if ( 𝑅 ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + 𝑅 ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 96 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 ↑ 𝑘 ) = ( 𝑏 ↑ 𝑘 ) ) |
| 97 |
96
|
oveq2d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 98 |
97
|
mpteq2dv |
⊢ ( 𝑤 = 𝑏 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 99 |
98
|
cbvmptv |
⊢ ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 100 |
99
|
fveq1i |
⊢ ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) |
| 101 |
|
seqeq3 |
⊢ ( ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) → seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ) |
| 102 |
100 101
|
ax-mp |
⊢ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) = seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) |
| 103 |
102
|
eleq1i |
⊢ ( seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ ) |
| 104 |
103
|
rabbii |
⊢ { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } = { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } |
| 105 |
104
|
supeq1i |
⊢ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 106 |
105
|
eleq1i |
⊢ ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ↔ sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ ) |
| 107 |
105
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) = ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 108 |
107
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) |
| 109 |
106 108 94
|
ifbieq12i |
⊢ if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) = if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 110 |
109
|
oveq2i |
⊢ ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) = ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
| 111 |
110
|
oveq1i |
⊢ ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) = ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) |
| 112 |
111
|
oveq2i |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑤 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑤 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑥 ) + if ( sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑥 ) + sup ( { 𝑧 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ‘ 𝑧 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑥 ) + 1 ) ) ) / 2 ) ) |
| 113 |
6 55 66 83 9 95 112
|
pserdv2 |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 114 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
| 115 |
9 114
|
eqsstri |
⊢ 𝐷 ⊆ dom abs |
| 116 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 117 |
116
|
fdmi |
⊢ dom abs = ℂ |
| 118 |
115 117
|
sseqtri |
⊢ 𝐷 ⊆ ℂ |
| 119 |
118
|
sseli |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 ∈ ℂ ) |
| 120 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 121 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → 𝑏 = 𝑦 ) |
| 122 |
121
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) |
| 123 |
122
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) |
| 124 |
123
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑏 = 𝑦 ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 126 |
|
nnex |
⊢ ℕ ∈ V |
| 127 |
126
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
| 128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
| 129 |
120 124 125 128
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 131 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) |
| 132 |
131
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 133 |
131 132
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) ) |
| 134 |
131
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) |
| 135 |
134
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( 𝑦 ↑ ( 𝑘 − 1 ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 136 |
133 135
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑦 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 137 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 138 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V ) |
| 139 |
130 136 137 138
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 140 |
139
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 141 |
119 140
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 142 |
141
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( 𝐹 ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 143 |
113 142
|
eqtr4d |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) ) |
| 144 |
|
nfcv |
⊢ Ⅎ 𝑏 ℕ |
| 145 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 146 |
8 145
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐸 |
| 147 |
146 33
|
nffv |
⊢ Ⅎ 𝑏 ( 𝐸 ‘ 𝑦 ) |
| 148 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑛 |
| 149 |
147 148
|
nffv |
⊢ Ⅎ 𝑏 ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) |
| 150 |
144 149
|
nfsum |
⊢ Ⅎ 𝑏 Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) |
| 151 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
| 152 |
|
simpl |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → 𝑦 = 𝑏 ) |
| 153 |
152
|
fveq2d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑏 ) ) |
| 154 |
153
|
fveq1d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) ) |
| 155 |
154
|
sumeq2dv |
⊢ ( 𝑦 = 𝑏 → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 157 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 158 |
44 157
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 159 |
8 158
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐸 |
| 160 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑏 |
| 161 |
159 160
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐸 ‘ 𝑏 ) |
| 162 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑛 |
| 163 |
161 162
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) |
| 164 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
| 165 |
156 163 164
|
cbvsum |
⊢ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) |
| 166 |
155 165
|
eqtrdi |
⊢ ( 𝑦 = 𝑏 → Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 167 |
30 29 150 151 166
|
cbvmptf |
⊢ ( 𝑦 ∈ 𝐷 ↦ Σ 𝑛 ∈ ℕ ( ( 𝐸 ‘ 𝑦 ) ‘ 𝑛 ) ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 168 |
143 167
|
eqtrdi |
⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |