Description: Lemma for binomcxp . When C is not a nonnegative integer, the generalized sum in binomcxplemnn0 —which we will call P —is a convergent power series: its base b is always of smaller absolute value than the radius of convergence.
pserdv2 gives the derivative of P , which by dvradcnv also converges in that radius. When A is fixed at one, ( A + b ) times that derivative equals ( C x. P ) and fraction ( P / ( ( A + b ) ^c C ) ) is always defined with derivative zero, so the fraction is a constant—specifically one, because ( ( 1 + 0 ) ^c C ) = 1 . Thus ( ( 1 + b ) ^c C ) = ( Pb ) .
Finally, let b be ( B / A ) , and multiply both the binomial ( ( 1 + ( B / A ) ) ^c C ) and the sum ( P( B / A ) ) by ( A ^c C ) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | binomcxp.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
binomcxp.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
binomcxp.lt | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) | ||
binomcxp.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
binomcxplem.f | ⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) | ||
binomcxplem.s | ⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | ||
binomcxplem.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
binomcxplem.e | ⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | ||
binomcxplem.d | ⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
binomcxplem.p | ⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | ||
Assertion | binomcxplemnotnn0 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | binomcxp.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | binomcxp.lt | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) | |
4 | binomcxp.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
5 | binomcxplem.f | ⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) | |
6 | binomcxplem.s | ⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | |
7 | binomcxplem.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
8 | binomcxplem.e | ⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
9 | binomcxplem.d | ⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
10 | binomcxplem.p | ⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
11 | nfcv | ⊢ Ⅎ 𝑏 ◡ abs | |
12 | nfcv | ⊢ Ⅎ 𝑏 0 | |
13 | nfcv | ⊢ Ⅎ 𝑏 [,) | |
14 | nfcv | ⊢ Ⅎ 𝑏 + | |
15 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | |
16 | 6 15 | nfcxfr | ⊢ Ⅎ 𝑏 𝑆 |
17 | nfcv | ⊢ Ⅎ 𝑏 𝑟 | |
18 | 16 17 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑟 ) |
19 | 12 14 18 | nfseq | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) |
20 | 19 | nfel1 | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
21 | nfcv | ⊢ Ⅎ 𝑏 ℝ | |
22 | 20 21 | nfrabw | ⊢ Ⅎ 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } |
23 | nfcv | ⊢ Ⅎ 𝑏 ℝ* | |
24 | nfcv | ⊢ Ⅎ 𝑏 < | |
25 | 22 23 24 | nfsup | ⊢ Ⅎ 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
26 | 7 25 | nfcxfr | ⊢ Ⅎ 𝑏 𝑅 |
27 | 12 13 26 | nfov | ⊢ Ⅎ 𝑏 ( 0 [,) 𝑅 ) |
28 | 11 27 | nfima | ⊢ Ⅎ 𝑏 ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
29 | 9 28 | nfcxfr | ⊢ Ⅎ 𝑏 𝐷 |
30 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
31 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) | |
32 | nfcv | ⊢ Ⅎ 𝑏 ℕ0 | |
33 | nfcv | ⊢ Ⅎ 𝑏 𝑥 | |
34 | 16 33 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑥 ) |
35 | nfcv | ⊢ Ⅎ 𝑏 𝑘 | |
36 | 34 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) |
37 | 32 36 | nfsum | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) |
38 | simpl | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 𝑥 ) | |
39 | 38 | fveq2d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝑥 ) ) |
40 | 39 | fveq1d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
41 | 40 | sumeq2dv | ⊢ ( 𝑏 = 𝑥 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
42 | 29 30 31 37 41 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
43 | 10 42 | eqtri | ⊢ 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
44 | 43 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
45 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 = ( 𝐵 / 𝐴 ) ) | |
46 | 45 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) |
47 | 46 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
48 | 47 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
49 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
51 | 1 | rpcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
53 | 0red | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
54 | 50 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
55 | 52 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
56 | 50 | absge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
57 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
58 | 53 54 55 56 57 | lelttrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 < ( abs ‘ 𝐴 ) ) |
59 | 58 | gt0ne0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
60 | 52 | abs00ad | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
61 | 60 | necon3bid | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
62 | 59 61 | mpbid | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
63 | 50 52 62 | divcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
64 | 63 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
65 | 63 | absge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ) |
66 | 55 | recnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
67 | 66 | mulid1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
68 | 57 67 | breqtrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) < ( ( abs ‘ 𝐴 ) · 1 ) ) |
69 | 1red | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
70 | 55 58 | elrpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
71 | 54 69 70 | ltdivmuld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ↔ ( abs ‘ 𝐵 ) < ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
72 | 68 71 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ) |
73 | 50 52 62 | absdivd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
74 | 1 2 3 4 5 6 7 | binomcxplemradcnv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 = 1 ) |
75 | 72 73 74 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) |
76 | 0re | ⊢ 0 ∈ ℝ | |
77 | ssrab2 | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ | |
78 | ressxr | ⊢ ℝ ⊆ ℝ* | |
79 | 77 78 | sstri | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
80 | supxrcl | ⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) | |
81 | 79 80 | ax-mp | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* |
82 | 7 81 | eqeltri | ⊢ 𝑅 ∈ ℝ* |
83 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) ) ) | |
84 | 76 82 83 | mp2an | ⊢ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) ) |
85 | 64 65 75 84 | syl3anbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) |
86 | 9 | eleq2i | ⊢ ( ( 𝐵 / 𝐴 ) ∈ 𝐷 ↔ ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
87 | absf | ⊢ abs : ℂ ⟶ ℝ | |
88 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
89 | elpreima | ⊢ ( abs Fn ℂ → ( ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
90 | 87 88 89 | mp2b | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) |
91 | 86 90 | bitri | ⊢ ( ( 𝐵 / 𝐴 ) ∈ 𝐷 ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) |
92 | 63 85 91 | sylanbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ 𝐷 ) |
93 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ∈ V | |
94 | 93 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ∈ V ) |
95 | 44 48 92 94 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ‘ ( 𝐵 / 𝐴 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
96 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
97 | 96 | cnbl0 | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
98 | 82 97 | ax-mp | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
99 | 9 98 | eqtri | ⊢ 𝐷 = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
100 | 0cnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℂ ) | |
101 | 82 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 ∈ ℝ* ) |
102 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
103 | 102 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
104 | nfv | ⊢ Ⅎ 𝑏 ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) | |
105 | 29 | nfcri | ⊢ Ⅎ 𝑏 𝑥 ∈ 𝐷 |
106 | 104 105 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) |
107 | 37 | nfel1 | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ |
108 | 106 107 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) |
109 | eleq1 | ⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∈ 𝐷 ↔ 𝑥 ∈ 𝐷 ) ) | |
110 | 109 | anbi2d | ⊢ ( 𝑏 = 𝑥 → ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) ) ) |
111 | 41 | eleq1d | ⊢ ( 𝑏 = 𝑥 → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ↔ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) ) |
112 | 110 111 | imbi12d | ⊢ ( 𝑏 = 𝑥 → ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) ) ) |
113 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
114 | 0zd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℤ ) | |
115 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
116 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
117 | 9 116 | eqsstri | ⊢ 𝐷 ⊆ dom abs |
118 | 87 | fdmi | ⊢ dom abs = ℂ |
119 | 117 118 | sseqtri | ⊢ 𝐷 ⊆ ℂ |
120 | 119 | sseli | ⊢ ( 𝑏 ∈ 𝐷 → 𝑏 ∈ ℂ ) |
121 | 6 | a1i | ⊢ ( 𝜑 → 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
122 | nn0ex | ⊢ ℕ0 ∈ V | |
123 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V |
124 | 123 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V ) |
125 | 121 124 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
126 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
127 | 125 126 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
128 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
129 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) | |
130 | 129 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 𝑘 ) ) |
131 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
132 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ V ) | |
133 | 128 130 131 132 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
134 | 133 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
135 | 134 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
136 | 127 135 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
137 | 120 136 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
138 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
139 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
140 | 138 139 | bcccl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
141 | 120 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 ∈ ℂ ) |
142 | 141 139 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
143 | 140 142 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
144 | 137 143 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
145 | 144 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
146 | eleq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∈ 𝐷 ↔ 𝑏 ∈ 𝐷 ) ) | |
147 | 146 | anbi2d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ↔ ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ) ) |
148 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑏 ) ) | |
149 | 148 | seqeq3d | ⊢ ( 𝑥 = 𝑏 → seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) = seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ) |
150 | 149 | eleq1d | ⊢ ( 𝑥 = 𝑏 → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
151 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑏 ) ) | |
152 | 151 | seqeq3d | ⊢ ( 𝑥 = 𝑏 → seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) |
153 | 152 | eleq1d | ⊢ ( 𝑥 = 𝑏 → ( seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
154 | 150 153 | anbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ↔ ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) ) |
155 | 147 154 | imbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) ) ) |
156 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
157 | 155 156 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
158 | 157 | simpld | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
159 | 158 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
160 | 113 114 115 145 159 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
161 | 108 112 160 | chvarfv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) |
162 | 161 43 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 : 𝐷 ⟶ ℂ ) |
163 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 1 ∈ ℂ ) | |
164 | 119 | sseli | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
165 | 164 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ℂ ) |
166 | 163 165 | addcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ∈ ℂ ) |
167 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
168 | 167 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → - 𝐶 ∈ ℂ ) |
169 | 166 168 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ℂ ) |
170 | nfcv | ⊢ Ⅎ 𝑥 ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) | |
171 | nfcv | ⊢ Ⅎ 𝑏 ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) | |
172 | oveq2 | ⊢ ( 𝑏 = 𝑥 → ( 1 + 𝑏 ) = ( 1 + 𝑥 ) ) | |
173 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) |
174 | 29 30 170 171 173 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) |
175 | 169 174 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ℂ ) |
176 | cnex | ⊢ ℂ ∈ V | |
177 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
178 | 87 176 177 | mp2an | ⊢ abs ∈ V |
179 | 178 | cnvex | ⊢ ◡ abs ∈ V |
180 | imaexg | ⊢ ( ◡ abs ∈ V → ( ◡ abs “ ( 0 [,) 𝑅 ) ) ∈ V ) | |
181 | 179 180 | ax-mp | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ∈ V |
182 | 9 181 | eqeltri | ⊢ 𝐷 ∈ V |
183 | 182 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ∈ V ) |
184 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
185 | 103 162 175 183 183 184 | off | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) : 𝐷 ⟶ ℂ ) |
186 | 1ex | ⊢ 1 ∈ V | |
187 | 186 | fconst | ⊢ ( 𝐷 × { 1 } ) : 𝐷 ⟶ { 1 } |
188 | fconstmpt | ⊢ ( 𝐷 × { 1 } ) = ( 𝑥 ∈ 𝐷 ↦ 1 ) | |
189 | nfcv | ⊢ Ⅎ 𝑏 1 | |
190 | nfcv | ⊢ Ⅎ 𝑥 1 | |
191 | eqidd | ⊢ ( 𝑥 = 𝑏 → 1 = 1 ) | |
192 | 30 29 189 190 191 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐷 ↦ 1 ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) |
193 | 188 192 | eqtri | ⊢ ( 𝐷 × { 1 } ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) |
194 | 193 | feq1i | ⊢ ( ( 𝐷 × { 1 } ) : 𝐷 ⟶ { 1 } ↔ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } ) |
195 | 187 194 | mpbi | ⊢ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } |
196 | ax-1cn | ⊢ 1 ∈ ℂ | |
197 | snssi | ⊢ ( 1 ∈ ℂ → { 1 } ⊆ ℂ ) | |
198 | 196 197 | ax-mp | ⊢ { 1 } ⊆ ℂ |
199 | fss | ⊢ ( ( ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } ∧ { 1 } ⊆ ℂ ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ ) | |
200 | 195 198 199 | mp2an | ⊢ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ |
201 | 200 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ ) |
202 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
203 | 202 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } ) |
204 | 1 2 3 4 5 6 7 8 9 10 | binomcxplemdvsum | ⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
205 | 204 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
206 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) | |
207 | nfcv | ⊢ Ⅎ 𝑏 ℕ | |
208 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
209 | 8 208 | nfcxfr | ⊢ Ⅎ 𝑏 𝐸 |
210 | 209 33 | nffv | ⊢ Ⅎ 𝑏 ( 𝐸 ‘ 𝑥 ) |
211 | 210 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) |
212 | 207 211 | nfsum | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) |
213 | simpl | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → 𝑏 = 𝑥 ) | |
214 | 213 | fveq2d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ‘ 𝑏 ) = ( 𝐸 ‘ 𝑥 ) ) |
215 | 214 | fveq1d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
216 | 215 | sumeq2dv | ⊢ ( 𝑏 = 𝑥 → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
217 | 29 30 206 212 216 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
218 | 205 217 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
219 | sumex | ⊢ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ∈ V | |
220 | 219 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ∈ V ) |
221 | 218 220 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) : 𝐷 ⟶ V ) |
222 | 221 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D 𝑃 ) = 𝐷 ) |
223 | 1 2 3 4 5 6 7 8 9 | binomcxplemdvbinom | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
224 | nfcv | ⊢ Ⅎ 𝑥 ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) | |
225 | nfcv | ⊢ Ⅎ 𝑏 ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) | |
226 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
227 | 226 | oveq2d | ⊢ ( 𝑏 = 𝑥 → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
228 | 29 30 224 225 227 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
229 | 223 228 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
230 | 168 163 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ ) |
231 | 166 230 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ ) |
232 | 168 231 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ ) |
233 | 229 232 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) : 𝐷 ⟶ ℂ ) |
234 | 233 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝐷 ) |
235 | 203 162 175 222 234 | dvmulf | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) ) ) |
236 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
237 | 236 | mulid1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · 1 ) = 𝐶 ) |
238 | 237 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · 1 ) + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
239 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℂ ) | |
240 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
241 | 1zzd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℤ ) | |
242 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
243 | 242 137 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
244 | 243 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
245 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
246 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
247 | 245 246 | bcccl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
248 | 242 247 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
249 | 120 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ ℂ ) |
250 | 249 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 ∈ ℂ ) |
251 | 250 246 | expcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
252 | 242 251 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
253 | 248 252 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
254 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
255 | 254 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℕ0 ) |
256 | 113 255 144 | iserex | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
257 | 158 256 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
258 | 257 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
259 | 240 241 244 253 258 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
260 | 236 239 259 | adddid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( ( 𝐶 · 1 ) + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
261 | 8 | a1i | ⊢ ( 𝜑 → 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
262 | nnex | ⊢ ℕ ∈ V | |
263 | 262 | mptex | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
264 | 263 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
265 | 261 264 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
266 | 120 265 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
267 | 266 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
268 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V ) | |
269 | 267 268 | fmpt3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) : ℕ ⟶ V ) |
270 | 269 | feqmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
271 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V ) | |
272 | 265 271 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
273 | 242 133 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
274 | 273 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) ) |
275 | 274 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
276 | 275 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
277 | 272 276 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
278 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
279 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
280 | 279 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
281 | 278 280 | bccp1k | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) ) ) |
282 | 242 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
283 | 282 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
284 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
285 | 283 284 | npcand | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
286 | 285 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( ( 𝑘 − 1 ) + 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
287 | 285 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) |
288 | 287 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
289 | 281 286 288 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
290 | 289 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) = ( 𝑘 · ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) ) |
291 | 278 280 | bcccl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
292 | 283 284 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℂ ) |
293 | 278 292 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
294 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
295 | 294 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
296 | 291 293 283 295 | divassd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
297 | 296 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) ) = ( 𝑘 · ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) ) |
298 | 291 293 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
299 | 298 283 295 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ) |
300 | 290 297 299 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ) |
301 | 300 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
302 | 301 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
303 | 291 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
304 | 293 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
305 | 303 304 | mulcomd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) |
306 | 305 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
307 | 277 302 306 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
308 | 120 307 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
309 | 308 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
310 | 309 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
311 | 270 310 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
312 | 311 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) shift - 1 ) ) |
313 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) | |
314 | ovex | ⊢ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V | |
315 | oveq1 | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝑘 − 1 ) = ( ( 𝑗 − - 1 ) − 1 ) ) | |
316 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝐶 − ( 𝑘 − 1 ) ) = ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) ) |
317 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) = ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) |
318 | 316 317 | oveq12d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) ) |
319 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) |
320 | 318 319 | oveq12d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) |
321 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
322 | 321 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1 + - 1 ) ) = ( ℤ≥ ‘ 0 ) |
323 | 113 322 | eqtr4i | ⊢ ℕ0 = ( ℤ≥ ‘ ( 1 + - 1 ) ) |
324 | 241 | znegcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 1 ∈ ℤ ) |
325 | 313 314 320 240 323 241 324 | uzmptshftfval | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) shift - 1 ) = ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) ) |
326 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 − - 1 ) = ( 𝑘 − - 1 ) ) | |
327 | 326 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 − - 1 ) − 1 ) = ( ( 𝑘 − - 1 ) − 1 ) ) |
328 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) ) |
329 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) |
330 | 328 329 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) = ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
331 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) |
332 | 330 331 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) = ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
333 | 332 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
334 | 333 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) ) |
335 | 312 325 334 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) ) |
336 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
337 | 1cnd | ⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℂ ) | |
338 | 336 337 | subnegd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 − - 1 ) = ( 𝑘 + 1 ) ) |
339 | 338 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 − - 1 ) − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
340 | 336 337 | pncand | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
341 | 339 340 | eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 − - 1 ) − 1 ) = 𝑘 ) |
342 | 341 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 − - 1 ) − 1 ) = 𝑘 ) |
343 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝐶 − 𝑘 ) ) |
344 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
345 | 343 344 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) = ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ) |
346 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
347 | 345 346 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
348 | 347 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
349 | 335 348 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
350 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
351 | 349 350 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
352 | 242 351 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
353 | 336 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
354 | 245 353 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
355 | 354 247 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ∈ ℂ ) |
356 | 355 251 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
357 | 242 356 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
358 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) | |
359 | 358 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) |
360 | 359 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) |
361 | 309 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
362 | 249 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝑏 ∈ ℂ ) |
363 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
364 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
365 | 364 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
366 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
367 | 365 366 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℂ ) |
368 | 363 367 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
369 | 279 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
370 | 363 369 | bcccl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
371 | 368 370 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
372 | 362 369 | expcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
373 | 362 371 372 | mul12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
374 | 362 372 | mulcomd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑏 ↑ ( 𝑘 − 1 ) ) · 𝑏 ) ) |
375 | 362 369 | expp1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝑏 ↑ ( 𝑘 − 1 ) ) · 𝑏 ) ) |
376 | 285 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
377 | 376 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
378 | 377 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
379 | 374 375 378 | 3eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( 𝑏 ↑ 𝑘 ) ) |
380 | 379 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
381 | 373 380 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
382 | 361 381 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
383 | 382 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
384 | 360 383 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
385 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
386 | 384 385 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
387 | 371 252 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
388 | climrel | ⊢ Rel ⇝ | |
389 | 157 | simprd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
390 | 389 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
391 | climdm | ⊢ ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) | |
392 | 390 391 | sylib | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
393 | 0z | ⊢ 0 ∈ ℤ | |
394 | neg1z | ⊢ - 1 ∈ ℤ | |
395 | fvex | ⊢ ( 𝐸 ‘ 𝑏 ) ∈ V | |
396 | 395 | seqshft | ⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ) |
397 | 393 394 396 | mp2an | ⊢ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
398 | 0cn | ⊢ 0 ∈ ℂ | |
399 | 398 196 | subnegi | ⊢ ( 0 − - 1 ) = ( 0 + 1 ) |
400 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
401 | 399 400 | eqtri | ⊢ ( 0 − - 1 ) = 1 |
402 | seqeq1 | ⊢ ( ( 0 − - 1 ) = 1 → seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) | |
403 | 401 402 | ax-mp | ⊢ seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) |
404 | 403 | oveq1i | ⊢ ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) = ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
405 | 397 404 | eqtri | ⊢ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
406 | 405 | breq1i | ⊢ ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
407 | seqex | ⊢ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ V | |
408 | climshft | ⊢ ( ( - 1 ∈ ℤ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ V ) → ( ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) | |
409 | 394 407 408 | mp2an | ⊢ ( ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
410 | 406 409 | bitri | ⊢ ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
411 | 392 410 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
412 | releldm | ⊢ ( ( Rel ⇝ ∧ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) | |
413 | 388 411 412 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) |
414 | 254 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℕ0 ) |
415 | 351 356 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
416 | 113 414 415 | iserex | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) ) |
417 | 413 416 | mpbid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) |
418 | 371 372 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
419 | 309 418 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
420 | 386 382 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
421 | 240 241 249 392 419 420 | isermulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ⇝ ( 𝑏 · ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) |
422 | releldm | ⊢ ( ( Rel ⇝ ∧ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ⇝ ( 𝑏 · ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ∈ dom ⇝ ) | |
423 | 388 421 422 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ∈ dom ⇝ ) |
424 | 240 241 352 357 386 387 417 423 | isumadd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
425 | 424 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
426 | 363 365 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
427 | 426 248 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ∈ ℂ ) |
428 | 427 371 252 | adddird | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
429 | 428 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
430 | 429 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
431 | 307 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
432 | 431 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
433 | 120 432 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
434 | 433 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
435 | 240 241 309 418 390 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
436 | 239 249 435 | adddird | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) + ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
437 | 435 | mulid2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
438 | 240 241 309 418 390 249 | isummulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
439 | 381 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
440 | 438 439 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
441 | 437 440 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) + ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
442 | 434 436 441 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
443 | 400 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
444 | 240 443 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
445 | oveq1 | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝑘 − 1 ) = ( ( 1 + 𝑗 ) − 1 ) ) | |
446 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝐶 − ( 𝑘 − 1 ) ) = ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) ) |
447 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) = ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) |
448 | 446 447 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
449 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) |
450 | 448 449 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
451 | 113 444 450 241 114 418 | isumshft | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
452 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 1 + 𝑗 ) = ( 1 + 𝑘 ) ) | |
453 | 452 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 1 + 𝑗 ) − 1 ) = ( ( 1 + 𝑘 ) − 1 ) ) |
454 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) ) |
455 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) |
456 | 454 455 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) = ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
457 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) |
458 | 456 457 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
459 | 458 | cbvsumv | ⊢ Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) |
460 | 459 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
461 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
462 | 461 353 | pncan2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝑘 ) − 1 ) = 𝑘 ) |
463 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝐶 − 𝑘 ) ) |
464 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
465 | 463 464 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) = ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ) |
466 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
467 | 465 466 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
468 | 467 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
469 | 451 460 468 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
470 | 113 114 351 356 413 | isum1p | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
471 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
472 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐶 − 𝑘 ) = ( 𝐶 − 0 ) ) |
473 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐶 C𝑐 𝑘 ) = ( 𝐶 C𝑐 0 ) ) |
474 | 472 473 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) = ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) ) |
475 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝑏 ↑ 𝑘 ) = ( 𝑏 ↑ 0 ) ) |
476 | 474 475 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ) |
477 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
478 | 477 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
479 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ∈ V ) | |
480 | 349 476 478 479 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) = ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ) |
481 | 236 | subid1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 − 0 ) = 𝐶 ) |
482 | 236 | bccn0 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 C𝑐 0 ) = 1 ) |
483 | 481 482 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) = ( 𝐶 · 1 ) ) |
484 | 483 237 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) = 𝐶 ) |
485 | 249 | exp0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ↑ 0 ) = 1 ) |
486 | 484 485 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) = ( 𝐶 · 1 ) ) |
487 | 480 486 237 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) = 𝐶 ) |
488 | 444 | eqcomi | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
489 | 488 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) |
490 | 489 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
491 | 487 490 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
492 | 469 470 491 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
493 | 492 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
494 | 240 241 352 357 417 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
495 | 249 435 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
496 | 440 495 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
497 | 236 494 496 | addassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
498 | 442 493 497 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
499 | 425 430 498 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
500 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
501 | 278 500 | binomcxplemwb | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) = ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) ) |
502 | 501 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
503 | 502 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
504 | 503 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
505 | 504 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
506 | 363 248 252 | mulassd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
507 | 506 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
508 | 240 241 244 253 258 236 | isummulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ℕ ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
509 | 507 508 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
510 | 509 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
511 | 499 505 510 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
512 | 238 260 511 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
513 | 6 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
514 | 123 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V ) |
515 | 513 514 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ ℂ ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
516 | 120 515 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
517 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
518 | 516 517 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
519 | 518 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
520 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
521 | 520 131 | bcccl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
522 | 133 521 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
523 | 522 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
524 | 523 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
525 | 524 251 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
526 | 113 114 518 525 159 | isum1p | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
527 | 471 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
528 | 527 475 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ) |
529 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ∈ V ) | |
530 | 516 528 478 529 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) = ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ) |
531 | 5 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
532 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → 𝑗 = 0 ) | |
533 | 532 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 0 ) ) |
534 | 477 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
535 | ovexd | ⊢ ( 𝜑 → ( 𝐶 C𝑐 0 ) ∈ V ) | |
536 | 531 533 534 535 | fvmptd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐶 C𝑐 0 ) ) |
537 | 536 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 0 ) = ( 𝐶 C𝑐 0 ) ) |
538 | 537 482 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 0 ) = 1 ) |
539 | 538 485 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) = ( 1 · 1 ) ) |
540 | 239 | mulid1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 · 1 ) = 1 ) |
541 | 530 539 540 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) = 1 ) |
542 | 488 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) |
543 | 134 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
544 | 242 543 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
545 | 544 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
546 | 545 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
547 | 542 546 | syl5eq | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
548 | 541 547 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
549 | 519 526 548 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) |
550 | 549 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
551 | 512 550 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
552 | 236 160 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ ℂ ) |
553 | 239 249 | addcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ∈ ℂ ) |
554 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
555 | 240 241 554 419 390 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
556 | 239 249 | subnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 − - 𝑏 ) = ( 1 + 𝑏 ) ) |
557 | 249 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 𝑏 ∈ ℂ ) |
558 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑏 ∈ ℂ ∧ ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
559 | 87 88 558 | mp2b | ⊢ ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑏 ∈ ℂ ∧ ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) ) |
560 | 559 | simprbi | ⊢ ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) → ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) |
561 | 560 9 | eleq2s | ⊢ ( 𝑏 ∈ 𝐷 → ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) |
562 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑏 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑏 ) ∧ ( abs ‘ 𝑏 ) < 𝑅 ) ) ) | |
563 | 76 82 562 | mp2an | ⊢ ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑏 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑏 ) ∧ ( abs ‘ 𝑏 ) < 𝑅 ) ) |
564 | 563 | simp3bi | ⊢ ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) → ( abs ‘ 𝑏 ) < 𝑅 ) |
565 | 561 564 | syl | ⊢ ( 𝑏 ∈ 𝐷 → ( abs ‘ 𝑏 ) < 𝑅 ) |
566 | 565 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ 𝑏 ) < 𝑅 ) |
567 | 249 | absnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ - 𝑏 ) = ( abs ‘ 𝑏 ) ) |
568 | 567 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ 𝑏 ) = ( abs ‘ - 𝑏 ) ) |
569 | 74 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝑅 = 1 ) |
570 | 566 568 569 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ - 𝑏 ) < 1 ) |
571 | 1re | ⊢ 1 ∈ ℝ | |
572 | abssubne0 | ⊢ ( ( - 𝑏 ∈ ℂ ∧ 1 ∈ ℝ ∧ ( abs ‘ - 𝑏 ) < 1 ) → ( 1 − - 𝑏 ) ≠ 0 ) | |
573 | 571 572 | mp3an2 | ⊢ ( ( - 𝑏 ∈ ℂ ∧ ( abs ‘ - 𝑏 ) < 1 ) → ( 1 − - 𝑏 ) ≠ 0 ) |
574 | 557 570 573 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 − - 𝑏 ) ≠ 0 ) |
575 | 556 574 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ≠ 0 ) |
576 | 552 553 555 575 | divmuld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ↔ ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
577 | 551 576 | mpbird | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
578 | 236 160 553 575 | div23d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
579 | 577 578 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
580 | 579 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
581 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 / ( 1 + 𝑏 ) ) ∈ V ) | |
582 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ V | |
583 | 582 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ V ) |
584 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ) | |
585 | 10 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
586 | 104 29 183 581 583 584 585 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
587 | 580 205 586 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ) |
588 | 587 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
589 | 223 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) = ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) |
590 | 588 589 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) ) = ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) ) |
591 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ∈ V ) | |
592 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ V ) | |
593 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ V ) | |
594 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ∈ V ) | |
595 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) | |
596 | 104 29 183 593 594 586 595 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
597 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ V ) | |
598 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) | |
599 | 104 29 183 597 583 598 585 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
600 | 104 29 183 591 592 596 599 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) ) |
601 | 235 590 600 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) ) |
602 | 236 553 575 | divcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 / ( 1 + 𝑏 ) ) ∈ ℂ ) |
603 | 236 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 𝐶 ∈ ℂ ) |
604 | 553 603 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ∈ ℂ ) |
605 | 602 160 604 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
606 | 236 553 604 575 | div32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝐶 · ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) ) |
607 | 553 575 603 239 | cxpsubd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( ( 1 + 𝑏 ) ↑𝑐 1 ) ) ) |
608 | 553 | cxp1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 1 ) = ( 1 + 𝑏 ) ) |
609 | 608 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( ( 1 + 𝑏 ) ↑𝑐 1 ) ) = ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) |
610 | 607 609 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
611 | 610 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) = ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
612 | 606 611 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
613 | 612 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
614 | 605 613 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
615 | 603 239 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ ) |
616 | 553 615 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ ) |
617 | 236 616 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
618 | 617 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
619 | 236 616 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ ) |
620 | 619 160 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
621 | 618 620 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
622 | 614 621 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) + - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
623 | 619 160 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ ℂ ) |
624 | 623 | negidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) + - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = 0 ) |
625 | 622 624 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = 0 ) |
626 | 625 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
627 | 601 626 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
628 | nfcv | ⊢ Ⅎ 𝑥 0 | |
629 | eqidd | ⊢ ( 𝑥 = 𝑏 → 0 = 0 ) | |
630 | 30 29 12 628 629 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐷 ↦ 0 ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) |
631 | 627 630 | eqtr4di | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
632 | c0ex | ⊢ 0 ∈ V | |
633 | 632 | snid | ⊢ 0 ∈ { 0 } |
634 | 633 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 0 ∈ { 0 } ) |
635 | 631 634 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) : 𝐷 ⟶ { 0 } ) |
636 | 635 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = 𝐷 ) |
637 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) | |
638 | 0cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) | |
639 | dvconst | ⊢ ( 1 ∈ ℂ → ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) ) | |
640 | 196 639 | ax-mp | ⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) |
641 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) | |
642 | 641 | oveq2i | ⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) |
643 | fconstmpt | ⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) | |
644 | 640 642 643 | 3eqtr3i | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
645 | 644 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
646 | 119 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ⊆ ℂ ) |
647 | fvex | ⊢ ( TopOpen ‘ ℂfld ) ∈ V | |
648 | cnfldtps | ⊢ ℂfld ∈ TopSp | |
649 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
650 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
651 | 649 650 | tpsuni | ⊢ ( ℂfld ∈ TopSp → ℂ = ∪ ( TopOpen ‘ ℂfld ) ) |
652 | 648 651 | ax-mp | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
653 | 652 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ V → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
654 | 647 653 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
655 | 654 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
656 | 650 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
657 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
658 | 650 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
659 | 658 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) ) |
660 | 657 398 82 659 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) |
661 | 99 660 | eqeltri | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
662 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) | |
663 | 656 661 662 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 |
664 | 663 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) |
665 | 203 637 638 645 646 655 650 664 | dvmptres2 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ 1 ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
666 | 192 | oveq2i | ⊢ ( ℂ D ( 𝑥 ∈ 𝐷 ↦ 1 ) ) = ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) |
667 | 665 666 630 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
668 | 626 601 667 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) ) |
669 | 1rp | ⊢ 1 ∈ ℝ+ | |
670 | 74 669 | eqeltrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 ∈ ℝ+ ) |
671 | blcntr | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ+ ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) | |
672 | 657 398 671 | mp3an12 | ⊢ ( 𝑅 ∈ ℝ+ → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
673 | 670 672 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
674 | 673 99 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ 𝐷 ) |
675 | 0zd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℤ ) | |
676 | eqidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) | |
677 | nfv | ⊢ Ⅎ 𝑏 𝜑 | |
678 | 29 | nfel2 | ⊢ Ⅎ 𝑏 0 ∈ 𝐷 |
679 | 677 678 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑 ∧ 0 ∈ 𝐷 ) |
680 | nfv | ⊢ Ⅎ 𝑏 𝑘 ∈ ℕ0 | |
681 | 679 680 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) |
682 | 16 12 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 0 ) |
683 | 682 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) |
684 | 683 | nfel1 | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ |
685 | 681 684 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
686 | eleq1 | ⊢ ( 𝑏 = 0 → ( 𝑏 ∈ 𝐷 ↔ 0 ∈ 𝐷 ) ) | |
687 | 686 | anbi2d | ⊢ ( 𝑏 = 0 → ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ↔ ( 𝜑 ∧ 0 ∈ 𝐷 ) ) ) |
688 | 687 | anbi1d | ⊢ ( 𝑏 = 0 → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) ) ) |
689 | fveq2 | ⊢ ( 𝑏 = 0 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 0 ) ) | |
690 | 689 | fveq1d | ⊢ ( 𝑏 = 0 → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
691 | 690 | eleq1d | ⊢ ( 𝑏 = 0 → ( ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ↔ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) ) |
692 | 688 691 | imbi12d | ⊢ ( 𝑏 = 0 → ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) ) ) |
693 | 685 632 692 144 | vtoclf | ⊢ ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
694 | 674 693 | syldanl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
695 | 12 14 682 | nfseq | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 0 ) ) |
696 | 695 | nfel1 | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ |
697 | 679 696 | nfim | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
698 | 689 | seqeq3d | ⊢ ( 𝑏 = 0 → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) = seq 0 ( + , ( 𝑆 ‘ 0 ) ) ) |
699 | 698 | eleq1d | ⊢ ( 𝑏 = 0 → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) ) |
700 | 687 699 | imbi12d | ⊢ ( 𝑏 = 0 → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ↔ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) ) ) |
701 | 697 632 700 158 | vtoclf | ⊢ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
702 | 674 701 | syldan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
703 | 113 675 676 694 702 | isum1p | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( ( 𝑆 ‘ 0 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) ) |
704 | 133 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
705 | 704 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
706 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 0 ) | |
707 | 706 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
708 | 705 707 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
709 | 708 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ) |
710 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ∈ V |
711 | 710 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ∈ V ) |
712 | 513 709 100 711 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑆 ‘ 0 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ) |
713 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
714 | 713 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( 𝐶 C𝑐 𝑘 ) = ( 𝐶 C𝑐 0 ) ) |
715 | 713 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( 0 ↑ 𝑘 ) = ( 0 ↑ 0 ) ) |
716 | 714 715 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ) |
717 | 477 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
718 | ovexd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ∈ V ) | |
719 | 712 716 717 718 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 0 ) = ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ) |
720 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
721 | 720 | bccn0 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐶 C𝑐 0 ) = 1 ) |
722 | 100 | exp0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 0 ↑ 0 ) = 1 ) |
723 | 721 722 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) = ( 1 · 1 ) ) |
724 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
725 | 724 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 · 1 ) = 1 ) |
726 | 719 723 725 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 0 ) = 1 ) |
727 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ∈ V ) | |
728 | 712 727 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
729 | 242 728 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
730 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
731 | 730 | 0expd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( 0 ↑ 𝑘 ) = 0 ) |
732 | 731 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · 0 ) ) |
733 | 521 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
734 | 242 733 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
735 | 734 | mul01d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · 0 ) = 0 ) |
736 | 729 732 735 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = 0 ) |
737 | 736 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 0 ) |
738 | 444 | sumeq1i | ⊢ Σ 𝑘 ∈ ℕ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) |
739 | 240 | eqimssi | ⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
740 | 739 | orci | ⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
741 | sumz | ⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑘 ∈ ℕ 0 = 0 ) | |
742 | 740 741 | ax-mp | ⊢ Σ 𝑘 ∈ ℕ 0 = 0 |
743 | 737 738 742 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = 0 ) |
744 | 726 743 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 0 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) = ( 1 + 0 ) ) |
745 | 703 744 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( 1 + 0 ) ) |
746 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
747 | 746 | oveq1i | ⊢ ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) = ( 1 ↑𝑐 - 𝐶 ) |
748 | 720 | negcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → - 𝐶 ∈ ℂ ) |
749 | 748 | 1cxpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 ↑𝑐 - 𝐶 ) = 1 ) |
750 | 747 749 | syl5eq | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) = 1 ) |
751 | 745 750 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) = ( ( 1 + 0 ) · 1 ) ) |
752 | 746 | oveq1i | ⊢ ( ( 1 + 0 ) · 1 ) = ( 1 · 1 ) |
753 | 752 724 | eqtri | ⊢ ( ( 1 + 0 ) · 1 ) = 1 |
754 | 751 753 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) = 1 ) |
755 | 162 | ffnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 Fn 𝐷 ) |
756 | 175 | ffnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) Fn 𝐷 ) |
757 | 43 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
758 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 = 0 ) | |
759 | 758 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 0 ) ) |
760 | 759 | fveq1d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
761 | 760 | sumeq2dv | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
762 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → 0 ∈ 𝐷 ) | |
763 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ V | |
764 | 763 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ V ) |
765 | 757 761 762 764 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( 𝑃 ‘ 0 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
766 | 174 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) ) |
767 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) | |
768 | 767 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → ( 1 + 𝑥 ) = ( 1 + 0 ) ) |
769 | 768 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) |
770 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ∈ V ) | |
771 | 766 769 762 770 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ‘ 0 ) = ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) |
772 | 755 756 183 183 184 765 771 | ofval | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) ) |
773 | 674 772 | mpdan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) ) |
774 | 193 | fveq1i | ⊢ ( ( 𝐷 × { 1 } ) ‘ 0 ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) |
775 | 186 | fvconst2 | ⊢ ( 0 ∈ 𝐷 → ( ( 𝐷 × { 1 } ) ‘ 0 ) = 1 ) |
776 | 674 775 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐷 × { 1 } ) ‘ 0 ) = 1 ) |
777 | 774 776 | eqtr3id | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) = 1 ) |
778 | 754 773 777 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) ) |
779 | 99 100 101 185 201 636 668 674 778 | dv11cn | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) ) |
780 | 779 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
781 | nfv | ⊢ Ⅎ 𝑏 ( 1 + 𝑥 ) ≠ 0 | |
782 | 106 781 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) |
783 | 172 | neeq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ≠ 0 ↔ ( 1 + 𝑥 ) ≠ 0 ) ) |
784 | 110 783 | imbi12d | ⊢ ( 𝑏 = 𝑥 → ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ≠ 0 ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) ) ) |
785 | 782 784 575 | chvarfv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) |
786 | 166 785 168 | cxpne0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ≠ 0 ) |
787 | eldifsn | ⊢ ( ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ℂ ∧ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ≠ 0 ) ) | |
788 | 169 786 787 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
789 | 788 174 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ( ℂ ∖ { 0 } ) ) |
790 | ofdivcan4 | ⊢ ( ( 𝐷 ∈ V ∧ 𝑃 : 𝐷 ⟶ ℂ ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝑃 ) | |
791 | 183 162 789 790 | syl3anc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝑃 ) |
792 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) ) | |
793 | 104 29 183 239 604 792 595 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
794 | 780 791 793 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
795 | 553 575 603 | cxpnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - - 𝐶 ) = ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) |
796 | 236 | negnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - - 𝐶 = 𝐶 ) |
797 | 796 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - - 𝐶 ) = ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) |
798 | 795 797 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) |
799 | 798 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) ) |
800 | 794 799 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) ) |
801 | nfcv | ⊢ Ⅎ 𝑥 ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) | |
802 | nfcv | ⊢ Ⅎ 𝑏 ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) | |
803 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) = ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) |
804 | 29 30 801 802 803 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) |
805 | 800 804 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) ) |
806 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → 𝑥 = ( 𝐵 / 𝐴 ) ) | |
807 | 806 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → ( 1 + 𝑥 ) = ( 1 + ( 𝐵 / 𝐴 ) ) ) |
808 | 807 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) = ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ) |
809 | 1cnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
810 | 809 63 | addcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 + ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
811 | 810 720 | cxpcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ∈ ℂ ) |
812 | 805 808 92 811 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ‘ ( 𝐵 / 𝐴 ) ) = ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ) |
813 | 704 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
814 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = ( 𝐵 / 𝐴 ) ) | |
815 | 814 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) = ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) |
816 | 813 815 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
817 | 816 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
818 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ∈ V |
819 | 818 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ∈ V ) |
820 | 513 817 63 819 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
821 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ∈ V ) | |
822 | 820 821 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
823 | 822 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
824 | 95 812 823 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
825 | 824 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
826 | 2 1 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℝ ) |
827 | 826 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℝ ) |
828 | 69 827 | readdcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 + ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
829 | df-neg | ⊢ - ( 𝐵 / 𝐴 ) = ( 0 − ( 𝐵 / 𝐴 ) ) | |
830 | 826 | recnd | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
831 | 830 | negcld | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ∈ ℂ ) |
832 | 831 | abscld | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
833 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
834 | 830 | absnegd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) = ( abs ‘ ( 𝐵 / 𝐴 ) ) ) |
835 | 1 | rpne0d | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
836 | 49 51 835 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
837 | 834 836 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
838 | 49 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℝ ) |
839 | 669 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
840 | 51 835 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
841 | 838 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℂ ) |
842 | 841 | div1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / 1 ) = ( abs ‘ 𝐵 ) ) |
843 | 842 3 | eqbrtrd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / 1 ) < ( abs ‘ 𝐴 ) ) |
844 | 838 839 840 843 | ltdiv23d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ) |
845 | 837 844 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) < 1 ) |
846 | 832 833 845 | ltled | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) ≤ 1 ) |
847 | 826 | renegcld | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ∈ ℝ ) |
848 | 847 833 | absled | ⊢ ( 𝜑 → ( ( abs ‘ - ( 𝐵 / 𝐴 ) ) ≤ 1 ↔ ( - 1 ≤ - ( 𝐵 / 𝐴 ) ∧ - ( 𝐵 / 𝐴 ) ≤ 1 ) ) ) |
849 | 846 848 | mpbid | ⊢ ( 𝜑 → ( - 1 ≤ - ( 𝐵 / 𝐴 ) ∧ - ( 𝐵 / 𝐴 ) ≤ 1 ) ) |
850 | 849 | simprd | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ≤ 1 ) |
851 | 829 850 | eqbrtrrid | ⊢ ( 𝜑 → ( 0 − ( 𝐵 / 𝐴 ) ) ≤ 1 ) |
852 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
853 | 852 826 833 | lesubaddd | ⊢ ( 𝜑 → ( ( 0 − ( 𝐵 / 𝐴 ) ) ≤ 1 ↔ 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) ) |
854 | 851 853 | mpbid | ⊢ ( 𝜑 → 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) |
855 | 854 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) |
856 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℝ+ ) |
857 | 856 | rpred | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
858 | 856 | rpge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ 𝐴 ) |
859 | 828 855 857 858 720 | mulcxpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) ↑𝑐 𝐶 ) = ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
860 | 809 63 52 | adddird | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( ( 𝐵 / 𝐴 ) · 𝐴 ) ) ) |
861 | 52 | mulid2d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 · 𝐴 ) = 𝐴 ) |
862 | 50 52 62 | divcan1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) · 𝐴 ) = 𝐵 ) |
863 | 861 862 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 · 𝐴 ) + ( ( 𝐵 / 𝐴 ) · 𝐴 ) ) = ( 𝐴 + 𝐵 ) ) |
864 | 860 863 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
865 | 864 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) ↑𝑐 𝐶 ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
866 | 859 865 | eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
867 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
868 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
869 | 867 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
870 | 733 869 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ∈ ℂ ) |
871 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | ⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐴 ) ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) ) |
872 | 871 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐴 ) ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) |
873 | 92 872 | syldan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) |
874 | 52 720 | cxpcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
875 | 113 675 822 870 873 874 | isummulc1 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
876 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
877 | 51 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
878 | 835 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
879 | 876 877 878 | divrecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) = ( 𝐵 · ( 1 / 𝐴 ) ) ) |
880 | 879 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) = ( ( 𝐵 · ( 1 / 𝐴 ) ) ↑ 𝑘 ) ) |
881 | 877 878 | reccld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
882 | 876 881 868 | mulexpd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 · ( 1 / 𝐴 ) ) ↑ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
883 | 880 882 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
884 | 883 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
885 | 876 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
886 | 881 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
887 | 733 885 886 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
888 | 884 887 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
889 | 888 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
890 | 733 885 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ∈ ℂ ) |
891 | 874 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
892 | 890 886 891 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
893 | 890 891 886 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
894 | 889 892 893 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
895 | 868 | nn0cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
896 | 877 895 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) ∈ ℂ ) |
897 | 877 878 895 | cxpne0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) ≠ 0 ) |
898 | 891 896 897 | divrecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐴 ↑𝑐 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) ) |
899 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
900 | 877 878 899 895 | cxpsubd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐴 ↑𝑐 𝑘 ) ) ) |
901 | 868 | nn0zd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
902 | 877 878 901 | exprecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 1 / ( 𝐴 ↑ 𝑘 ) ) ) |
903 | cxpexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | |
904 | 877 868 903 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
905 | 904 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) = ( 1 / ( 𝐴 ↑ 𝑘 ) ) ) |
906 | 902 905 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) |
907 | 906 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) ) |
908 | 898 900 907 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) |
909 | 908 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) ) |
910 | 899 895 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
911 | 877 910 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ∈ ℂ ) |
912 | 733 885 911 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
913 | 894 909 912 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
914 | 733 911 885 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
915 | 913 914 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
916 | 915 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
917 | 875 916 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
918 | 825 866 917 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |