Description: Lemma for binomcxp . When C is not a nonnegative integer, the generalized sum in binomcxplemnn0 —which we will call P —is a convergent power series: its base b is always of smaller absolute value than the radius of convergence.
pserdv2 gives the derivative of P , which by dvradcnv also converges in that radius. When A is fixed at one, ( A + b ) times that derivative equals ( C x. P ) and fraction ( P / ( ( A + b ) ^c C ) ) is always defined with derivative zero, so the fraction is a constant—specifically one, because ( ( 1 + 0 ) ^c C ) = 1 . Thus ( ( 1 + b ) ^c C ) = ( Pb ) .
Finally, let b be ( B / A ) , and multiply both the binomial ( ( 1 + ( B / A ) ) ^c C ) and the sum ( P( B / A ) ) by ( A ^c C ) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binomcxp.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| binomcxp.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| binomcxp.lt | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) | ||
| binomcxp.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| binomcxplem.f | ⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) | ||
| binomcxplem.s | ⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | ||
| binomcxplem.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| binomcxplem.e | ⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | ||
| binomcxplem.d | ⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | ||
| binomcxplem.p | ⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | ||
| Assertion | binomcxplemnotnn0 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxp.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | binomcxp.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | binomcxp.lt | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) | |
| 4 | binomcxp.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | binomcxplem.f | ⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) | |
| 6 | binomcxplem.s | ⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | |
| 7 | binomcxplem.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 8 | binomcxplem.e | ⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
| 9 | binomcxplem.d | ⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) | |
| 10 | binomcxplem.p | ⊢ 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
| 11 | nfcv | ⊢ Ⅎ 𝑏 ◡ abs | |
| 12 | nfcv | ⊢ Ⅎ 𝑏 0 | |
| 13 | nfcv | ⊢ Ⅎ 𝑏 [,) | |
| 14 | nfcv | ⊢ Ⅎ 𝑏 + | |
| 15 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) | |
| 16 | 6 15 | nfcxfr | ⊢ Ⅎ 𝑏 𝑆 |
| 17 | nfcv | ⊢ Ⅎ 𝑏 𝑟 | |
| 18 | 16 17 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑟 ) |
| 19 | 12 14 18 | nfseq | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) |
| 20 | 19 | nfel1 | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
| 21 | nfcv | ⊢ Ⅎ 𝑏 ℝ | |
| 22 | 20 21 | nfrabw | ⊢ Ⅎ 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } |
| 23 | nfcv | ⊢ Ⅎ 𝑏 ℝ* | |
| 24 | nfcv | ⊢ Ⅎ 𝑏 < | |
| 25 | 22 23 24 | nfsup | ⊢ Ⅎ 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 26 | 7 25 | nfcxfr | ⊢ Ⅎ 𝑏 𝑅 |
| 27 | 12 13 26 | nfov | ⊢ Ⅎ 𝑏 ( 0 [,) 𝑅 ) |
| 28 | 11 27 | nfima | ⊢ Ⅎ 𝑏 ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
| 29 | 9 28 | nfcxfr | ⊢ Ⅎ 𝑏 𝐷 |
| 30 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
| 31 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) | |
| 32 | nfcv | ⊢ Ⅎ 𝑏 ℕ0 | |
| 33 | nfcv | ⊢ Ⅎ 𝑏 𝑥 | |
| 34 | 16 33 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑥 ) |
| 35 | nfcv | ⊢ Ⅎ 𝑏 𝑘 | |
| 36 | 34 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) |
| 37 | 32 36 | nfsum | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) |
| 38 | simpl | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 𝑥 ) | |
| 39 | 38 | fveq2d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 40 | 39 | fveq1d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 41 | 40 | sumeq2dv | ⊢ ( 𝑏 = 𝑥 → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 42 | 29 30 31 37 41 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 43 | 10 42 | eqtri | ⊢ 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 44 | 43 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
| 45 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 = ( 𝐵 / 𝐴 ) ) | |
| 46 | 45 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) |
| 47 | 46 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
| 48 | 47 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
| 49 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 51 | 1 | rpcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 53 | 0red | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 54 | 50 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 55 | 52 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 56 | 50 | absge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 57 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
| 58 | 53 54 55 56 57 | lelttrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 59 | 58 | gt0ne0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 60 | 52 | abs00ad | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 61 | 60 | necon3bid | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 62 | 59 61 | mpbid | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
| 63 | 50 52 62 | divcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 64 | 63 | abscld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 65 | 63 | absge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ) |
| 66 | 55 | recnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 67 | 66 | mulridd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) · 1 ) = ( abs ‘ 𝐴 ) ) |
| 68 | 57 67 | breqtrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐵 ) < ( ( abs ‘ 𝐴 ) · 1 ) ) |
| 69 | 1red | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 70 | 55 58 | elrpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 71 | 54 69 70 | ltdivmuld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ↔ ( abs ‘ 𝐵 ) < ( ( abs ‘ 𝐴 ) · 1 ) ) ) |
| 72 | 68 71 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ) |
| 73 | 50 52 62 | absdivd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
| 74 | 1 2 3 4 5 6 7 | binomcxplemradcnv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 = 1 ) |
| 75 | 72 73 74 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) |
| 76 | 0re | ⊢ 0 ∈ ℝ | |
| 77 | ssrab2 | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ | |
| 78 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 79 | 77 78 | sstri | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
| 80 | supxrcl | ⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) | |
| 81 | 79 80 | ax-mp | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* |
| 82 | 7 81 | eqeltri | ⊢ 𝑅 ∈ ℝ* |
| 83 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) ) ) | |
| 84 | 76 82 83 | mp2an | ⊢ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) < 𝑅 ) ) |
| 85 | 64 65 75 84 | syl3anbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) |
| 86 | 9 | eleq2i | ⊢ ( ( 𝐵 / 𝐴 ) ∈ 𝐷 ↔ ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
| 87 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 88 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 89 | elpreima | ⊢ ( abs Fn ℂ → ( ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 90 | 87 88 89 | mp2b | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 91 | 86 90 | bitri | ⊢ ( ( 𝐵 / 𝐴 ) ∈ 𝐷 ↔ ( ( 𝐵 / 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 / 𝐴 ) ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 92 | 63 85 91 | sylanbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ 𝐷 ) |
| 93 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ∈ V | |
| 94 | 93 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ∈ V ) |
| 95 | 44 48 92 94 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ‘ ( 𝐵 / 𝐴 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) ) |
| 96 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 97 | 96 | cnbl0 | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 98 | 82 97 | ax-mp | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
| 99 | 9 98 | eqtri | ⊢ 𝐷 = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
| 100 | 0cnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℂ ) | |
| 101 | 82 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 ∈ ℝ* ) |
| 102 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 103 | 102 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 104 | nfv | ⊢ Ⅎ 𝑏 ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) | |
| 105 | 29 | nfcri | ⊢ Ⅎ 𝑏 𝑥 ∈ 𝐷 |
| 106 | 104 105 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) |
| 107 | 37 | nfel1 | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ |
| 108 | 106 107 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) |
| 109 | eleq1 | ⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∈ 𝐷 ↔ 𝑥 ∈ 𝐷 ) ) | |
| 110 | 109 | anbi2d | ⊢ ( 𝑏 = 𝑥 → ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ↔ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) ) ) |
| 111 | 41 | eleq1d | ⊢ ( 𝑏 = 𝑥 → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ↔ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 112 | 110 111 | imbi12d | ⊢ ( 𝑏 = 𝑥 → ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) ) ) |
| 113 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 114 | 0zd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℤ ) | |
| 115 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
| 116 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs | |
| 117 | 9 116 | eqsstri | ⊢ 𝐷 ⊆ dom abs |
| 118 | 87 | fdmi | ⊢ dom abs = ℂ |
| 119 | 117 118 | sseqtri | ⊢ 𝐷 ⊆ ℂ |
| 120 | 119 | sseli | ⊢ ( 𝑏 ∈ 𝐷 → 𝑏 ∈ ℂ ) |
| 121 | 6 | a1i | ⊢ ( 𝜑 → 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 122 | nn0ex | ⊢ ℕ0 ∈ V | |
| 123 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V |
| 124 | 123 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V ) |
| 125 | 121 124 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 126 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
| 127 | 125 126 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 128 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
| 129 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) | |
| 130 | 129 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 131 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 132 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ V ) | |
| 133 | 128 130 131 132 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 134 | 133 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 135 | 134 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 136 | 127 135 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 137 | 120 136 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 138 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 139 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 140 | 138 139 | bcccl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 141 | 120 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 ∈ ℂ ) |
| 142 | 141 139 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
| 143 | 140 142 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 144 | 137 143 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
| 145 | 144 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
| 146 | eleq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∈ 𝐷 ↔ 𝑏 ∈ 𝐷 ) ) | |
| 147 | 146 | anbi2d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ↔ ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ) ) |
| 148 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑏 ) ) | |
| 149 | 148 | seqeq3d | ⊢ ( 𝑥 = 𝑏 → seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) = seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ) |
| 150 | 149 | eleq1d | ⊢ ( 𝑥 = 𝑏 → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
| 151 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑏 ) ) | |
| 152 | 151 | seqeq3d | ⊢ ( 𝑥 = 𝑏 → seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) |
| 153 | 152 | eleq1d | ⊢ ( 𝑥 = 𝑏 → ( seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
| 154 | 150 153 | anbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ↔ ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) ) |
| 155 | 147 154 | imbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) ) ) |
| 156 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑥 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 157 | 155 156 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
| 158 | 157 | simpld | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 159 | 158 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 160 | 113 114 115 145 159 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
| 161 | 108 112 160 | chvarfv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ∈ ℂ ) |
| 162 | 161 43 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 : 𝐷 ⟶ ℂ ) |
| 163 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 1 ∈ ℂ ) | |
| 164 | 119 | sseli | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 165 | 164 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ℂ ) |
| 166 | 163 165 | addcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ∈ ℂ ) |
| 167 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
| 168 | 167 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → - 𝐶 ∈ ℂ ) |
| 169 | 166 168 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ℂ ) |
| 170 | nfcv | ⊢ Ⅎ 𝑥 ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) | |
| 171 | nfcv | ⊢ Ⅎ 𝑏 ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) | |
| 172 | oveq2 | ⊢ ( 𝑏 = 𝑥 → ( 1 + 𝑏 ) = ( 1 + 𝑥 ) ) | |
| 173 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) |
| 174 | 29 30 170 171 173 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) |
| 175 | 169 174 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ℂ ) |
| 176 | cnex | ⊢ ℂ ∈ V | |
| 177 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 178 | 87 176 177 | mp2an | ⊢ abs ∈ V |
| 179 | 178 | cnvex | ⊢ ◡ abs ∈ V |
| 180 | imaexg | ⊢ ( ◡ abs ∈ V → ( ◡ abs “ ( 0 [,) 𝑅 ) ) ∈ V ) | |
| 181 | 179 180 | ax-mp | ⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ∈ V |
| 182 | 9 181 | eqeltri | ⊢ 𝐷 ∈ V |
| 183 | 182 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ∈ V ) |
| 184 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 185 | 103 162 175 183 183 184 | off | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) : 𝐷 ⟶ ℂ ) |
| 186 | 1ex | ⊢ 1 ∈ V | |
| 187 | 186 | fconst | ⊢ ( 𝐷 × { 1 } ) : 𝐷 ⟶ { 1 } |
| 188 | fconstmpt | ⊢ ( 𝐷 × { 1 } ) = ( 𝑥 ∈ 𝐷 ↦ 1 ) | |
| 189 | nfcv | ⊢ Ⅎ 𝑏 1 | |
| 190 | nfcv | ⊢ Ⅎ 𝑥 1 | |
| 191 | eqidd | ⊢ ( 𝑥 = 𝑏 → 1 = 1 ) | |
| 192 | 30 29 189 190 191 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐷 ↦ 1 ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) |
| 193 | 188 192 | eqtri | ⊢ ( 𝐷 × { 1 } ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) |
| 194 | 193 | feq1i | ⊢ ( ( 𝐷 × { 1 } ) : 𝐷 ⟶ { 1 } ↔ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } ) |
| 195 | 187 194 | mpbi | ⊢ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } |
| 196 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 197 | snssi | ⊢ ( 1 ∈ ℂ → { 1 } ⊆ ℂ ) | |
| 198 | 196 197 | ax-mp | ⊢ { 1 } ⊆ ℂ |
| 199 | fss | ⊢ ( ( ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ { 1 } ∧ { 1 } ⊆ ℂ ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ ) | |
| 200 | 195 198 199 | mp2an | ⊢ ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ |
| 201 | 200 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) : 𝐷 ⟶ ℂ ) |
| 202 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 203 | 202 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } ) |
| 204 | 1 2 3 4 5 6 7 8 9 10 | binomcxplemdvsum | ⊢ ( 𝜑 → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 205 | 204 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 206 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) | |
| 207 | nfcv | ⊢ Ⅎ 𝑏 ℕ | |
| 208 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
| 209 | 8 208 | nfcxfr | ⊢ Ⅎ 𝑏 𝐸 |
| 210 | 209 33 | nffv | ⊢ Ⅎ 𝑏 ( 𝐸 ‘ 𝑥 ) |
| 211 | 210 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) |
| 212 | 207 211 | nfsum | ⊢ Ⅎ 𝑏 Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) |
| 213 | simpl | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → 𝑏 = 𝑥 ) | |
| 214 | 213 | fveq2d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ‘ 𝑏 ) = ( 𝐸 ‘ 𝑥 ) ) |
| 215 | 214 | fveq1d | ⊢ ( ( 𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 216 | 215 | sumeq2dv | ⊢ ( 𝑏 = 𝑥 → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 217 | 29 30 206 212 216 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) |
| 218 | 205 217 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
| 219 | sumex | ⊢ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ∈ V | |
| 220 | 219 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑥 ) ‘ 𝑘 ) ∈ V ) |
| 221 | 218 220 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) : 𝐷 ⟶ V ) |
| 222 | 221 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D 𝑃 ) = 𝐷 ) |
| 223 | 1 2 3 4 5 6 7 8 9 | binomcxplemdvbinom | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
| 224 | nfcv | ⊢ Ⅎ 𝑥 ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) | |
| 225 | nfcv | ⊢ Ⅎ 𝑏 ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) | |
| 226 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
| 227 | 226 | oveq2d | ⊢ ( 𝑏 = 𝑥 → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
| 228 | 29 30 224 225 227 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
| 229 | 223 228 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
| 230 | 168 163 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ ) |
| 231 | 166 230 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ ) |
| 232 | 168 231 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑥 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ ) |
| 233 | 229 232 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) : 𝐷 ⟶ ℂ ) |
| 234 | 233 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝐷 ) |
| 235 | 203 162 175 222 234 | dvmulf | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) ) ) |
| 236 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
| 237 | 236 | mulridd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · 1 ) = 𝐶 ) |
| 238 | 237 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · 1 ) + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 239 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℂ ) | |
| 240 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 241 | 1zzd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℤ ) | |
| 242 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 243 | 242 137 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 244 | 243 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 245 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 246 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 247 | 245 246 | bcccl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 248 | 242 247 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 249 | 120 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ ℂ ) |
| 250 | 249 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 ∈ ℂ ) |
| 251 | 250 246 | expcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
| 252 | 242 251 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ 𝑘 ) ∈ ℂ ) |
| 253 | 248 252 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 254 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 255 | 254 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℕ0 ) |
| 256 | 113 255 144 | iserex | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ) |
| 257 | 158 256 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 258 | 257 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 259 | 240 241 244 253 258 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 260 | 236 239 259 | adddid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( ( 𝐶 · 1 ) + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 261 | 8 | a1i | ⊢ ( 𝜑 → 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 262 | nnex | ⊢ ℕ ∈ V | |
| 263 | 262 | mptex | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
| 264 | 263 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
| 265 | 261 264 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 266 | 120 265 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 267 | 266 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 268 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V ) | |
| 269 | 267 268 | fmpt3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) : ℕ ⟶ V ) |
| 270 | 269 | feqmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 271 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V ) | |
| 272 | 265 271 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 273 | 242 133 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 274 | 273 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) ) |
| 275 | 274 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 276 | 275 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 277 | 272 276 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 278 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 279 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
| 280 | 279 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 281 | 278 280 | bccp1k | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) ) ) |
| 282 | 242 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 283 | 282 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 284 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 285 | 283 284 | npcand | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 286 | 285 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( ( 𝑘 − 1 ) + 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 287 | 285 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) |
| 288 | 287 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / ( ( 𝑘 − 1 ) + 1 ) ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
| 289 | 281 286 288 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
| 290 | 289 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) = ( 𝑘 · ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) ) |
| 291 | 278 280 | bcccl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 292 | 283 284 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 293 | 278 292 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 294 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 295 | 294 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 296 | 291 293 283 295 | divassd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) |
| 297 | 296 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) ) = ( 𝑘 · ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( ( 𝐶 − ( 𝑘 − 1 ) ) / 𝑘 ) ) ) ) |
| 298 | 291 293 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 299 | 298 283 295 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) / 𝑘 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ) |
| 300 | 290 297 299 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) = ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) ) |
| 301 | 300 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 302 | 301 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 303 | 291 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 304 | 293 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 305 | 303 304 | mulcomd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) |
| 306 | 305 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) · ( 𝐶 − ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 307 | 277 302 306 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 308 | 120 307 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 309 | 308 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 310 | 309 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ ↦ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 311 | 270 310 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐸 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 312 | 311 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) shift - 1 ) ) |
| 313 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) | |
| 314 | ovex | ⊢ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ V | |
| 315 | oveq1 | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝑘 − 1 ) = ( ( 𝑗 − - 1 ) − 1 ) ) | |
| 316 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝐶 − ( 𝑘 − 1 ) ) = ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) ) |
| 317 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) = ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) |
| 318 | 316 317 | oveq12d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) ) |
| 319 | 315 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) |
| 320 | 318 319 | oveq12d | ⊢ ( 𝑘 = ( 𝑗 − - 1 ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) |
| 321 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 322 | 321 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1 + - 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 323 | 113 322 | eqtr4i | ⊢ ℕ0 = ( ℤ≥ ‘ ( 1 + - 1 ) ) |
| 324 | 241 | znegcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 1 ∈ ℤ ) |
| 325 | 313 314 320 240 323 241 324 | uzmptshftfval | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) shift - 1 ) = ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) ) |
| 326 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 − - 1 ) = ( 𝑘 − - 1 ) ) | |
| 327 | 326 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 − - 1 ) − 1 ) = ( ( 𝑘 − - 1 ) − 1 ) ) |
| 328 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) ) |
| 329 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) |
| 330 | 328 329 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) = ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
| 331 | 327 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) = ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) |
| 332 | 330 331 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) = ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
| 333 | 332 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) |
| 334 | 333 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑗 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑗 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑗 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) ) |
| 335 | 312 325 334 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) ) |
| 336 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 337 | 1cnd | ⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 338 | 336 337 | subnegd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 − - 1 ) = ( 𝑘 + 1 ) ) |
| 339 | 338 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 − - 1 ) − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 340 | 336 337 | pncand | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 341 | 339 340 | eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 − - 1 ) − 1 ) = 𝑘 ) |
| 342 | 341 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 − - 1 ) − 1 ) = 𝑘 ) |
| 343 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝐶 − 𝑘 ) ) |
| 344 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 345 | 343 344 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) = ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ) |
| 346 | 342 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
| 347 | 345 346 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 348 | 347 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − ( ( 𝑘 − - 1 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 𝑘 − - 1 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 𝑘 − - 1 ) − 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 349 | 335 348 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 350 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
| 351 | 349 350 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 352 | 242 351 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 353 | 336 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 354 | 245 353 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
| 355 | 354 247 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ∈ ℂ ) |
| 356 | 355 251 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 357 | 242 356 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 358 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) | |
| 359 | 358 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) |
| 360 | 359 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) |
| 361 | 309 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 362 | 249 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝑏 ∈ ℂ ) |
| 363 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 364 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 365 | 364 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 366 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 367 | 365 366 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 368 | 363 367 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 369 | 279 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 370 | 363 369 | bcccl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 371 | 368 370 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 372 | 362 369 | expcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 373 | 362 371 372 | mul12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 374 | 362 372 | mulcomd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑏 ↑ ( 𝑘 − 1 ) ) · 𝑏 ) ) |
| 375 | 362 369 | expp1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( ( 𝑏 ↑ ( 𝑘 − 1 ) ) · 𝑏 ) ) |
| 376 | 285 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 377 | 376 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 378 | 377 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
| 379 | 374 375 378 | 3eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( 𝑏 ↑ 𝑘 ) ) |
| 380 | 379 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 381 | 373 380 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 382 | 361 381 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 383 | 382 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑘 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 384 | 360 383 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 385 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
| 386 | 384 385 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 387 | 371 252 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 388 | climrel | ⊢ Rel ⇝ | |
| 389 | 157 | simprd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 390 | 389 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ) |
| 391 | climdm | ⊢ ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) | |
| 392 | 390 391 | sylib | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
| 393 | 0z | ⊢ 0 ∈ ℤ | |
| 394 | neg1z | ⊢ - 1 ∈ ℤ | |
| 395 | fvex | ⊢ ( 𝐸 ‘ 𝑏 ) ∈ V | |
| 396 | 395 | seqshft | ⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ) |
| 397 | 393 394 396 | mp2an | ⊢ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
| 398 | 0cn | ⊢ 0 ∈ ℂ | |
| 399 | 398 196 | subnegi | ⊢ ( 0 − - 1 ) = ( 0 + 1 ) |
| 400 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 401 | 399 400 | eqtri | ⊢ ( 0 − - 1 ) = 1 |
| 402 | seqeq1 | ⊢ ( ( 0 − - 1 ) = 1 → seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) | |
| 403 | 401 402 | ax-mp | ⊢ seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) = seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) |
| 404 | 403 | oveq1i | ⊢ ( seq ( 0 − - 1 ) ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) = ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
| 405 | 397 404 | eqtri | ⊢ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) = ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) |
| 406 | 405 | breq1i | ⊢ ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
| 407 | seqex | ⊢ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ V | |
| 408 | climshft | ⊢ ( ( - 1 ∈ ℤ ∧ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ∈ V ) → ( ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) | |
| 409 | 394 407 408 | mp2an | ⊢ ( ( seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) shift - 1 ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
| 410 | 406 409 | bitri | ⊢ ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ↔ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
| 411 | 392 410 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) |
| 412 | releldm | ⊢ ( ( Rel ⇝ ∧ seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) | |
| 413 | 388 411 412 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) |
| 414 | 254 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 1 ∈ ℕ0 ) |
| 415 | 351 356 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 416 | 113 414 415 | iserex | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( seq 0 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) ) |
| 417 | 413 416 | mpbid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ) ∈ dom ⇝ ) |
| 418 | 371 372 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 419 | 309 418 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
| 420 | 386 382 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 421 | 240 241 249 392 419 420 | isermulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ⇝ ( 𝑏 · ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) |
| 422 | releldm | ⊢ ( ( Rel ⇝ ∧ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ⇝ ( 𝑏 · ( ⇝ ‘ seq 1 ( + , ( 𝐸 ‘ 𝑏 ) ) ) ) ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ∈ dom ⇝ ) | |
| 423 | 388 421 422 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝑏 · ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑗 ) ) ) ) ∈ dom ⇝ ) |
| 424 | 240 241 352 357 386 387 417 423 | isumadd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 425 | 424 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 426 | 363 365 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
| 427 | 426 248 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ∈ ℂ ) |
| 428 | 427 371 252 | adddird | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 429 | 428 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 430 | 429 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 431 | 307 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 432 | 431 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℂ ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 433 | 120 432 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 434 | 433 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 435 | 240 241 309 418 390 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 436 | 239 249 435 | adddird | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) + ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 437 | 435 | mullidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) |
| 438 | 240 241 309 418 390 249 | isummulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 439 | 381 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( 𝑏 · ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 440 | 438 439 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 441 | 437 440 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) + ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 442 | 434 436 441 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 443 | 400 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 444 | 240 443 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 445 | oveq1 | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝑘 − 1 ) = ( ( 1 + 𝑗 ) − 1 ) ) | |
| 446 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝐶 − ( 𝑘 − 1 ) ) = ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) ) |
| 447 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) = ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) |
| 448 | 446 447 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) = ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
| 449 | 445 | oveq2d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( 𝑏 ↑ ( 𝑘 − 1 ) ) = ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) |
| 450 | 448 449 | oveq12d | ⊢ ( 𝑘 = ( 1 + 𝑗 ) → ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
| 451 | 113 444 450 241 114 418 | isumshft | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) ) |
| 452 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 1 + 𝑗 ) = ( 1 + 𝑘 ) ) | |
| 453 | 452 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 1 + 𝑗 ) − 1 ) = ( ( 1 + 𝑘 ) − 1 ) ) |
| 454 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) ) |
| 455 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) |
| 456 | 454 455 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) = ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
| 457 | 453 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) = ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) |
| 458 | 456 457 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
| 459 | 458 | cbvsumv | ⊢ Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) |
| 460 | 459 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑗 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑗 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑗 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑗 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) ) |
| 461 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 462 | 461 353 | pncan2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝑘 ) − 1 ) = 𝑘 ) |
| 463 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝐶 − 𝑘 ) ) |
| 464 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 465 | 463 464 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) = ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) ) |
| 466 | 462 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) = ( 𝑏 ↑ 𝑘 ) ) |
| 467 | 465 466 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) = ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 468 | 467 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − ( ( 1 + 𝑘 ) − 1 ) ) · ( 𝐶 C𝑐 ( ( 1 + 𝑘 ) − 1 ) ) ) · ( 𝑏 ↑ ( ( 1 + 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 469 | 451 460 468 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 470 | 113 114 351 356 413 | isum1p | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 471 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
| 472 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐶 − 𝑘 ) = ( 𝐶 − 0 ) ) |
| 473 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐶 C𝑐 𝑘 ) = ( 𝐶 C𝑐 0 ) ) |
| 474 | 472 473 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) = ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) ) |
| 475 | 471 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝑏 ↑ 𝑘 ) = ( 𝑏 ↑ 0 ) ) |
| 476 | 474 475 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ) |
| 477 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 478 | 477 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
| 479 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ∈ V ) | |
| 480 | 349 476 478 479 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) = ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) ) |
| 481 | 236 | subid1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 − 0 ) = 𝐶 ) |
| 482 | 236 | bccn0 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 C𝑐 0 ) = 1 ) |
| 483 | 481 482 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) = ( 𝐶 · 1 ) ) |
| 484 | 483 237 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) = 𝐶 ) |
| 485 | 249 | exp0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ↑ 0 ) = 1 ) |
| 486 | 484 485 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 − 0 ) · ( 𝐶 C𝑐 0 ) ) · ( 𝑏 ↑ 0 ) ) = ( 𝐶 · 1 ) ) |
| 487 | 480 486 237 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) = 𝐶 ) |
| 488 | 444 | eqcomi | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
| 489 | 488 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) |
| 490 | 489 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 491 | 487 490 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐸 ‘ 𝑏 ) shift - 1 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 492 | 469 470 491 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 493 | 492 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 494 | 240 241 352 357 417 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 495 | 249 435 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 · Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 496 | 440 495 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 497 | 236 494 496 | addassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 498 | 442 493 497 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + ( Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ℕ ( ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 499 | 425 430 498 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 500 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 501 | 278 500 | binomcxplemwb | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) = ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) ) |
| 502 | 501 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 503 | 502 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 504 | 503 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 505 | 504 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( ( ( 𝐶 − 𝑘 ) · ( 𝐶 C𝑐 𝑘 ) ) + ( ( 𝐶 − ( 𝑘 − 1 ) ) · ( 𝐶 C𝑐 ( 𝑘 − 1 ) ) ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 506 | 363 248 252 | mulassd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 507 | 506 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 508 | 240 241 244 253 258 236 | isummulc2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ℕ ( 𝐶 · ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 509 | 507 508 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 510 | 509 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 + Σ 𝑘 ∈ ℕ ( ( 𝐶 · ( 𝐶 C𝑐 𝑘 ) ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 511 | 499 505 510 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 + ( 𝐶 · Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 512 | 238 260 511 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 513 | 6 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) ) |
| 514 | 123 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ∈ V ) |
| 515 | 513 514 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ ℂ ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 516 | 120 515 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 517 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ V ) | |
| 518 | 516 517 | fvmpt2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 519 | 518 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 520 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 521 | 520 131 | bcccl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 522 | 133 521 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 523 | 522 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 524 | 523 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 525 | 524 251 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ∈ ℂ ) |
| 526 | 113 114 518 525 159 | isum1p | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 527 | 471 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
| 528 | 527 475 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 = 0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ) |
| 529 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ∈ V ) | |
| 530 | 516 528 478 529 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) = ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) ) |
| 531 | 5 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) ) |
| 532 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → 𝑗 = 0 ) | |
| 533 | 532 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝐶 C𝑐 𝑗 ) = ( 𝐶 C𝑐 0 ) ) |
| 534 | 477 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 535 | ovexd | ⊢ ( 𝜑 → ( 𝐶 C𝑐 0 ) ∈ V ) | |
| 536 | 531 533 534 535 | fvmptd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐶 C𝑐 0 ) ) |
| 537 | 536 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 0 ) = ( 𝐶 C𝑐 0 ) ) |
| 538 | 537 482 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 0 ) = 1 ) |
| 539 | 538 485 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 0 ) · ( 𝑏 ↑ 0 ) ) = ( 1 · 1 ) ) |
| 540 | 239 | mulridd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 · 1 ) = 1 ) |
| 541 | 530 539 540 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) = 1 ) |
| 542 | 488 | sumeq1i | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) |
| 543 | 134 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 544 | 242 543 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 545 | 544 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 546 | 545 | sumeq2dv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 547 | 542 546 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) |
| 548 | 541 547 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑆 ‘ 𝑏 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
| 549 | 519 526 548 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 550 | 549 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( 1 + Σ 𝑘 ∈ ℕ ( ( 𝐶 C𝑐 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 551 | 512 550 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 552 | 236 160 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 553 | 239 249 | addcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ∈ ℂ ) |
| 554 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) | |
| 555 | 240 241 554 419 390 | isumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) |
| 556 | 239 249 | subnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 − - 𝑏 ) = ( 1 + 𝑏 ) ) |
| 557 | 249 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 𝑏 ∈ ℂ ) |
| 558 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑏 ∈ ℂ ∧ ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 559 | 87 88 558 | mp2b | ⊢ ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑏 ∈ ℂ ∧ ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 560 | 559 | simprbi | ⊢ ( 𝑏 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) → ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) |
| 561 | 560 9 | eleq2s | ⊢ ( 𝑏 ∈ 𝐷 → ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ) |
| 562 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑏 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑏 ) ∧ ( abs ‘ 𝑏 ) < 𝑅 ) ) ) | |
| 563 | 76 82 562 | mp2an | ⊢ ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑏 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑏 ) ∧ ( abs ‘ 𝑏 ) < 𝑅 ) ) |
| 564 | 563 | simp3bi | ⊢ ( ( abs ‘ 𝑏 ) ∈ ( 0 [,) 𝑅 ) → ( abs ‘ 𝑏 ) < 𝑅 ) |
| 565 | 561 564 | syl | ⊢ ( 𝑏 ∈ 𝐷 → ( abs ‘ 𝑏 ) < 𝑅 ) |
| 566 | 565 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ 𝑏 ) < 𝑅 ) |
| 567 | 249 | absnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ - 𝑏 ) = ( abs ‘ 𝑏 ) ) |
| 568 | 567 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ 𝑏 ) = ( abs ‘ - 𝑏 ) ) |
| 569 | 74 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → 𝑅 = 1 ) |
| 570 | 566 568 569 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ - 𝑏 ) < 1 ) |
| 571 | 1re | ⊢ 1 ∈ ℝ | |
| 572 | abssubne0 | ⊢ ( ( - 𝑏 ∈ ℂ ∧ 1 ∈ ℝ ∧ ( abs ‘ - 𝑏 ) < 1 ) → ( 1 − - 𝑏 ) ≠ 0 ) | |
| 573 | 571 572 | mp3an2 | ⊢ ( ( - 𝑏 ∈ ℂ ∧ ( abs ‘ - 𝑏 ) < 1 ) → ( 1 − - 𝑏 ) ≠ 0 ) |
| 574 | 557 570 573 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 − - 𝑏 ) ≠ 0 ) |
| 575 | 556 574 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ≠ 0 ) |
| 576 | 552 553 555 575 | divmuld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ↔ ( ( 1 + 𝑏 ) · Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
| 577 | 551 576 | mpbird | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) |
| 578 | 236 160 553 575 | div23d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) / ( 1 + 𝑏 ) ) = ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 579 | 577 578 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 580 | 579 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ ( ( 𝐸 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
| 581 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 / ( 1 + 𝑏 ) ) ∈ V ) | |
| 582 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ V | |
| 583 | 582 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ V ) |
| 584 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ) | |
| 585 | 10 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 586 | 104 29 183 581 583 584 585 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
| 587 | 580 205 586 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D 𝑃 ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ) |
| 588 | 587 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
| 589 | 223 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) = ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) |
| 590 | 588 589 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( ℂ D 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f · 𝑃 ) ) = ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) ) |
| 591 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ∈ V ) | |
| 592 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ V ) | |
| 593 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ V ) | |
| 594 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ∈ V ) | |
| 595 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) | |
| 596 | 104 29 183 593 594 586 595 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
| 597 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ V ) | |
| 598 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) | |
| 599 | 104 29 183 597 583 598 585 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) = ( 𝑏 ∈ 𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
| 600 | 104 29 183 591 592 596 599 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐶 / ( 1 + 𝑏 ) ) ) ∘f · 𝑃 ) ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f + ( ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ∘f · 𝑃 ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) ) |
| 601 | 235 590 600 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) ) |
| 602 | 236 553 575 | divcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 / ( 1 + 𝑏 ) ) ∈ ℂ ) |
| 603 | 236 | negcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - 𝐶 ∈ ℂ ) |
| 604 | 553 603 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ∈ ℂ ) |
| 605 | 602 160 604 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 606 | 236 553 604 575 | div32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝐶 · ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) ) |
| 607 | 553 575 603 239 | cxpsubd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( ( 1 + 𝑏 ) ↑𝑐 1 ) ) ) |
| 608 | 553 | cxp1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 1 ) = ( 1 + 𝑏 ) ) |
| 609 | 608 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( ( 1 + 𝑏 ) ↑𝑐 1 ) ) = ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) |
| 610 | 607 609 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
| 611 | 610 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) / ( 1 + 𝑏 ) ) ) = ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
| 612 | 606 611 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
| 613 | 612 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 614 | 605 613 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 615 | 603 239 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ ) |
| 616 | 553 615 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ ) |
| 617 | 236 616 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
| 618 | 617 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = ( - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 619 | 236 616 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ ) |
| 620 | 619 160 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( - ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 621 | 618 620 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) = - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) |
| 622 | 614 621 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = ( ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) + - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) |
| 623 | 619 160 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 624 | 623 | negidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) + - ( ( 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = 0 ) |
| 625 | 622 624 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) = 0 ) |
| 626 | 625 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( ( ( 𝐶 / ( 1 + 𝑏 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) · ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) + ( ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
| 627 | 601 626 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
| 628 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 629 | eqidd | ⊢ ( 𝑥 = 𝑏 → 0 = 0 ) | |
| 630 | 30 29 12 628 629 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐷 ↦ 0 ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) |
| 631 | 627 630 | eqtr4di | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
| 632 | c0ex | ⊢ 0 ∈ V | |
| 633 | 632 | snid | ⊢ 0 ∈ { 0 } |
| 634 | 633 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → 0 ∈ { 0 } ) |
| 635 | 631 634 | fmpt3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) : 𝐷 ⟶ { 0 } ) |
| 636 | 635 | fdmd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → dom ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = 𝐷 ) |
| 637 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 638 | 0cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 639 | dvconst | ⊢ ( 1 ∈ ℂ → ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) ) | |
| 640 | 196 639 | ax-mp | ⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) |
| 641 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) | |
| 642 | 641 | oveq2i | ⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 643 | fconstmpt | ⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) | |
| 644 | 640 642 643 | 3eqtr3i | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
| 645 | 644 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 646 | 119 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ⊆ ℂ ) |
| 647 | fvex | ⊢ ( TopOpen ‘ ℂfld ) ∈ V | |
| 648 | cnfldtps | ⊢ ℂfld ∈ TopSp | |
| 649 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 650 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 651 | 649 650 | tpsuni | ⊢ ( ℂfld ∈ TopSp → ℂ = ∪ ( TopOpen ‘ ℂfld ) ) |
| 652 | 648 651 | ax-mp | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 653 | 652 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ V → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 654 | 647 653 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 655 | 654 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 656 | 650 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 657 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 658 | 650 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 659 | 658 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 660 | 657 398 82 659 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) |
| 661 | 99 660 | eqeltri | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 662 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) | |
| 663 | 656 661 662 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 |
| 664 | 663 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) |
| 665 | 203 637 638 645 646 655 650 664 | dvmptres2 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ 1 ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
| 666 | 192 | oveq2i | ⊢ ( ℂ D ( 𝑥 ∈ 𝐷 ↦ 1 ) ) = ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) |
| 667 | 665 666 630 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) = ( 𝑏 ∈ 𝐷 ↦ 0 ) ) |
| 668 | 626 601 667 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) = ( ℂ D ( 𝑏 ∈ 𝐷 ↦ 1 ) ) ) |
| 669 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 670 | 74 669 | eqeltrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 ∈ ℝ+ ) |
| 671 | blcntr | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ+ ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) | |
| 672 | 657 398 671 | mp3an12 | ⊢ ( 𝑅 ∈ ℝ+ → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 673 | 670 672 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 674 | 673 99 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ 𝐷 ) |
| 675 | 0zd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℤ ) | |
| 676 | eqidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) | |
| 677 | nfv | ⊢ Ⅎ 𝑏 𝜑 | |
| 678 | 29 | nfel2 | ⊢ Ⅎ 𝑏 0 ∈ 𝐷 |
| 679 | 677 678 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑 ∧ 0 ∈ 𝐷 ) |
| 680 | nfv | ⊢ Ⅎ 𝑏 𝑘 ∈ ℕ0 | |
| 681 | 679 680 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) |
| 682 | 16 12 | nffv | ⊢ Ⅎ 𝑏 ( 𝑆 ‘ 0 ) |
| 683 | 682 35 | nffv | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) |
| 684 | 683 | nfel1 | ⊢ Ⅎ 𝑏 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ |
| 685 | 681 684 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
| 686 | eleq1 | ⊢ ( 𝑏 = 0 → ( 𝑏 ∈ 𝐷 ↔ 0 ∈ 𝐷 ) ) | |
| 687 | 686 | anbi2d | ⊢ ( 𝑏 = 0 → ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ↔ ( 𝜑 ∧ 0 ∈ 𝐷 ) ) ) |
| 688 | 687 | anbi1d | ⊢ ( 𝑏 = 0 → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) ) ) |
| 689 | fveq2 | ⊢ ( 𝑏 = 0 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 0 ) ) | |
| 690 | 689 | fveq1d | ⊢ ( 𝑏 = 0 → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
| 691 | 690 | eleq1d | ⊢ ( 𝑏 = 0 → ( ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ↔ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 692 | 688 691 | imbi12d | ⊢ ( 𝑏 = 0 → ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑏 ) ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) ) ) |
| 693 | 685 632 692 144 | vtoclf | ⊢ ( ( ( 𝜑 ∧ 0 ∈ 𝐷 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
| 694 | 674 693 | syldanl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ ℂ ) |
| 695 | 12 14 682 | nfseq | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 0 ) ) |
| 696 | 695 | nfel1 | ⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ |
| 697 | 679 696 | nfim | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
| 698 | 689 | seqeq3d | ⊢ ( 𝑏 = 0 → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) = seq 0 ( + , ( 𝑆 ‘ 0 ) ) ) |
| 699 | 698 | eleq1d | ⊢ ( 𝑏 = 0 → ( seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) ) |
| 700 | 687 699 | imbi12d | ⊢ ( 𝑏 = 0 → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 𝑏 ) ) ∈ dom ⇝ ) ↔ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) ) ) |
| 701 | 697 632 700 158 | vtoclf | ⊢ ( ( 𝜑 ∧ 0 ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
| 702 | 674 701 | syldan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → seq 0 ( + , ( 𝑆 ‘ 0 ) ) ∈ dom ⇝ ) |
| 703 | 113 675 676 694 702 | isum1p | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( ( 𝑆 ‘ 0 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) ) |
| 704 | 133 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 705 | 704 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 706 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 0 ) | |
| 707 | 706 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 708 | 705 707 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 709 | 708 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = 0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ) |
| 710 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ∈ V |
| 711 | 710 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ∈ V ) |
| 712 | 513 709 100 711 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑆 ‘ 0 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) ) |
| 713 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
| 714 | 713 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( 𝐶 C𝑐 𝑘 ) = ( 𝐶 C𝑐 0 ) ) |
| 715 | 713 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( 0 ↑ 𝑘 ) = ( 0 ↑ 0 ) ) |
| 716 | 714 715 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ) |
| 717 | 477 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
| 718 | ovexd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ∈ V ) | |
| 719 | 712 716 717 718 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 0 ) = ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) ) |
| 720 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 721 | 720 | bccn0 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐶 C𝑐 0 ) = 1 ) |
| 722 | 100 | exp0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 0 ↑ 0 ) = 1 ) |
| 723 | 721 722 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 0 ) · ( 0 ↑ 0 ) ) = ( 1 · 1 ) ) |
| 724 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 725 | 724 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 · 1 ) = 1 ) |
| 726 | 719 723 725 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 0 ) = 1 ) |
| 727 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ∈ V ) | |
| 728 | 712 727 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 729 | 242 728 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
| 730 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 731 | 730 | 0expd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 732 | 731 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · 0 ) ) |
| 733 | 521 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 734 | 242 733 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐶 C𝑐 𝑘 ) ∈ ℂ ) |
| 735 | 734 | mul01d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 C𝑐 𝑘 ) · 0 ) = 0 ) |
| 736 | 729 732 735 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = 0 ) |
| 737 | 736 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 0 ) |
| 738 | 444 | sumeq1i | ⊢ Σ 𝑘 ∈ ℕ ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) |
| 739 | 240 | eqimssi | ⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 740 | 739 | orci | ⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
| 741 | sumz | ⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑘 ∈ ℕ 0 = 0 ) | |
| 742 | 740 741 | ax-mp | ⊢ Σ 𝑘 ∈ ℕ 0 = 0 |
| 743 | 737 738 742 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = 0 ) |
| 744 | 726 743 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 0 ) ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) = ( 1 + 0 ) ) |
| 745 | 703 744 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) = ( 1 + 0 ) ) |
| 746 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 747 | 746 | oveq1i | ⊢ ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) = ( 1 ↑𝑐 - 𝐶 ) |
| 748 | 720 | negcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → - 𝐶 ∈ ℂ ) |
| 749 | 748 | 1cxpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 ↑𝑐 - 𝐶 ) = 1 ) |
| 750 | 747 749 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) = 1 ) |
| 751 | 745 750 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) = ( ( 1 + 0 ) · 1 ) ) |
| 752 | 746 | oveq1i | ⊢ ( ( 1 + 0 ) · 1 ) = ( 1 · 1 ) |
| 753 | 752 724 | eqtri | ⊢ ( ( 1 + 0 ) · 1 ) = 1 |
| 754 | 751 753 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) = 1 ) |
| 755 | 162 | ffnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 Fn 𝐷 ) |
| 756 | 175 | ffnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) Fn 𝐷 ) |
| 757 | 43 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) ) ) |
| 758 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 = 0 ) | |
| 759 | 758 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 0 ) ) |
| 760 | 759 | fveq1d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
| 761 | 760 | sumeq2dv | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
| 762 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → 0 ∈ 𝐷 ) | |
| 763 | sumex | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ V | |
| 764 | 763 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ∈ V ) |
| 765 | 757 761 762 764 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( 𝑃 ‘ 0 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) ) |
| 766 | 174 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ) ) |
| 767 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) | |
| 768 | 767 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → ( 1 + 𝑥 ) = ( 1 + 0 ) ) |
| 769 | 768 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) ∧ 𝑥 = 0 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) |
| 770 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ∈ V ) | |
| 771 | 766 769 762 770 | fvmptd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ‘ 0 ) = ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) |
| 772 | 755 756 183 183 184 765 771 | ofval | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 0 ∈ 𝐷 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) ) |
| 773 | 674 772 | mpdan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ 0 ) ‘ 𝑘 ) · ( ( 1 + 0 ) ↑𝑐 - 𝐶 ) ) ) |
| 774 | 193 | fveq1i | ⊢ ( ( 𝐷 × { 1 } ) ‘ 0 ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) |
| 775 | 186 | fvconst2 | ⊢ ( 0 ∈ 𝐷 → ( ( 𝐷 × { 1 } ) ‘ 0 ) = 1 ) |
| 776 | 674 775 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐷 × { 1 } ) ‘ 0 ) = 1 ) |
| 777 | 774 776 | eqtr3id | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) = 1 ) |
| 778 | 754 773 777 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ‘ 0 ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ‘ 0 ) ) |
| 779 | 99 100 101 185 201 636 668 674 778 | dv11cn | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) ) |
| 780 | 779 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
| 781 | nfv | ⊢ Ⅎ 𝑏 ( 1 + 𝑥 ) ≠ 0 | |
| 782 | 106 781 | nfim | ⊢ Ⅎ 𝑏 ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) |
| 783 | 172 | neeq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ≠ 0 ↔ ( 1 + 𝑥 ) ≠ 0 ) ) |
| 784 | 110 783 | imbi12d | ⊢ ( 𝑏 = 𝑥 → ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 + 𝑏 ) ≠ 0 ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) ) ) |
| 785 | 782 784 575 | chvarfv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( 1 + 𝑥 ) ≠ 0 ) |
| 786 | 166 785 168 | cxpne0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ≠ 0 ) |
| 787 | eldifsn | ⊢ ( ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ℂ ∧ ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ≠ 0 ) ) | |
| 788 | 169 786 787 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 1 + 𝑥 ) ↑𝑐 - 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 789 | 788 174 | fmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ( ℂ ∖ { 0 } ) ) |
| 790 | ofdivcan4 | ⊢ ( ( 𝐷 ∈ V ∧ 𝑃 : 𝐷 ⟶ ℂ ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) : 𝐷 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝑃 ) | |
| 791 | 183 162 789 790 | syl3anc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑃 ∘f · ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = 𝑃 ) |
| 792 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ 1 ) = ( 𝑏 ∈ 𝐷 ↦ 1 ) ) | |
| 793 | 104 29 183 239 604 792 595 | offval2f | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝑏 ∈ 𝐷 ↦ 1 ) ∘f / ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
| 794 | 780 791 793 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) ) |
| 795 | 553 575 603 | cxpnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - - 𝐶 ) = ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) |
| 796 | 236 | negnegd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → - - 𝐶 = 𝐶 ) |
| 797 | 796 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 1 + 𝑏 ) ↑𝑐 - - 𝐶 ) = ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) |
| 798 | 795 797 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐷 ) → ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) |
| 799 | 798 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑏 ∈ 𝐷 ↦ ( 1 / ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) ) |
| 800 | 794 799 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) ) |
| 801 | nfcv | ⊢ Ⅎ 𝑥 ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) | |
| 802 | nfcv | ⊢ Ⅎ 𝑏 ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) | |
| 803 | 172 | oveq1d | ⊢ ( 𝑏 = 𝑥 → ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) = ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) |
| 804 | 29 30 801 802 803 | cbvmptf | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 𝐶 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) |
| 805 | 800 804 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑃 = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) ) ) |
| 806 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → 𝑥 = ( 𝐵 / 𝐴 ) ) | |
| 807 | 806 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → ( 1 + 𝑥 ) = ( 1 + ( 𝐵 / 𝐴 ) ) ) |
| 808 | 807 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐵 / 𝐴 ) ) → ( ( 1 + 𝑥 ) ↑𝑐 𝐶 ) = ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ) |
| 809 | 1cnd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 810 | 809 63 | addcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 + ( 𝐵 / 𝐴 ) ) ∈ ℂ ) |
| 811 | 810 720 | cxpcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ∈ ℂ ) |
| 812 | 805 808 92 811 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑃 ‘ ( 𝐵 / 𝐴 ) ) = ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) ) |
| 813 | 704 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐶 C𝑐 𝑘 ) ) |
| 814 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = ( 𝐵 / 𝐴 ) ) | |
| 815 | 814 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 ↑ 𝑘 ) = ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) |
| 816 | 813 815 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 817 | 816 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑏 = ( 𝐵 / 𝐴 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 818 | 122 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ∈ V |
| 819 | 818 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ∈ V ) |
| 820 | 513 817 63 819 | fvmptd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 821 | ovexd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ∈ V ) | |
| 822 | 820 821 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 823 | 822 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 824 | 95 812 823 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 825 | 824 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 826 | 2 1 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℝ ) |
| 827 | 826 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℝ ) |
| 828 | 69 827 | readdcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 + ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 829 | df-neg | ⊢ - ( 𝐵 / 𝐴 ) = ( 0 − ( 𝐵 / 𝐴 ) ) | |
| 830 | 826 | recnd | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 831 | 830 | negcld | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 832 | 831 | abscld | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 833 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 834 | 830 | absnegd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) = ( abs ‘ ( 𝐵 / 𝐴 ) ) ) |
| 835 | 1 | rpne0d | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 836 | 49 51 835 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
| 837 | 834 836 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) ) |
| 838 | 49 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 839 | 669 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 840 | 51 835 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 841 | 838 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 842 | 841 | div1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / 1 ) = ( abs ‘ 𝐵 ) ) |
| 843 | 842 3 | eqbrtrd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / 1 ) < ( abs ‘ 𝐴 ) ) |
| 844 | 838 839 840 843 | ltdiv23d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝐴 ) ) < 1 ) |
| 845 | 837 844 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) < 1 ) |
| 846 | 832 833 845 | ltled | ⊢ ( 𝜑 → ( abs ‘ - ( 𝐵 / 𝐴 ) ) ≤ 1 ) |
| 847 | 826 | renegcld | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ∈ ℝ ) |
| 848 | 847 833 | absled | ⊢ ( 𝜑 → ( ( abs ‘ - ( 𝐵 / 𝐴 ) ) ≤ 1 ↔ ( - 1 ≤ - ( 𝐵 / 𝐴 ) ∧ - ( 𝐵 / 𝐴 ) ≤ 1 ) ) ) |
| 849 | 846 848 | mpbid | ⊢ ( 𝜑 → ( - 1 ≤ - ( 𝐵 / 𝐴 ) ∧ - ( 𝐵 / 𝐴 ) ≤ 1 ) ) |
| 850 | 849 | simprd | ⊢ ( 𝜑 → - ( 𝐵 / 𝐴 ) ≤ 1 ) |
| 851 | 829 850 | eqbrtrrid | ⊢ ( 𝜑 → ( 0 − ( 𝐵 / 𝐴 ) ) ≤ 1 ) |
| 852 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 853 | 852 826 833 | lesubaddd | ⊢ ( 𝜑 → ( ( 0 − ( 𝐵 / 𝐴 ) ) ≤ 1 ↔ 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) ) |
| 854 | 851 853 | mpbid | ⊢ ( 𝜑 → 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) |
| 855 | 854 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ ( 1 + ( 𝐵 / 𝐴 ) ) ) |
| 856 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℝ+ ) |
| 857 | 856 | rpred | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 858 | 856 | rpge0d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 0 ≤ 𝐴 ) |
| 859 | 828 855 857 858 720 | mulcxpd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) ↑𝑐 𝐶 ) = ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 860 | 809 63 52 | adddird | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( ( 𝐵 / 𝐴 ) · 𝐴 ) ) ) |
| 861 | 52 | mullidd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 862 | 50 52 62 | divcan1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) · 𝐴 ) = 𝐵 ) |
| 863 | 861 862 | oveq12d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 · 𝐴 ) + ( ( 𝐵 / 𝐴 ) · 𝐴 ) ) = ( 𝐴 + 𝐵 ) ) |
| 864 | 860 863 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
| 865 | 864 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) · 𝐴 ) ↑𝑐 𝐶 ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
| 866 | 859 865 | eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐵 / 𝐴 ) ) ↑𝑐 𝐶 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
| 867 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 868 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 869 | 867 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
| 870 | 733 869 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 871 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | ⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐴 ) ∈ 𝐷 ) → ( seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ∧ seq 1 ( + , ( 𝐸 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) ) |
| 872 | 871 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝐵 / 𝐴 ) ∈ 𝐷 ) → seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) |
| 873 | 92 872 | syldan | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → seq 0 ( + , ( 𝑆 ‘ ( 𝐵 / 𝐴 ) ) ) ∈ dom ⇝ ) |
| 874 | 52 720 | cxpcld | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 875 | 113 675 822 870 873 874 | isummulc1 | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 876 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 877 | 51 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 878 | 835 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
| 879 | 876 877 878 | divrecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 / 𝐴 ) = ( 𝐵 · ( 1 / 𝐴 ) ) ) |
| 880 | 879 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) = ( ( 𝐵 · ( 1 / 𝐴 ) ) ↑ 𝑘 ) ) |
| 881 | 877 878 | reccld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 882 | 876 881 868 | mulexpd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 · ( 1 / 𝐴 ) ) ↑ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 883 | 880 882 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 884 | 883 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 885 | 876 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 886 | 881 868 | expcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
| 887 | 733 885 886 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 ↑ 𝑘 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 888 | 884 887 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 889 | 888 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 890 | 733 885 | mulcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ∈ ℂ ) |
| 891 | 874 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 892 | 890 886 891 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) |
| 893 | 890 891 886 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 894 | 889 892 893 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 895 | 868 | nn0cnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 896 | 877 895 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) ∈ ℂ ) |
| 897 | 877 878 895 | cxpne0d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) ≠ 0 ) |
| 898 | 891 896 897 | divrecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐴 ↑𝑐 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) ) |
| 899 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 900 | 877 878 899 895 | cxpsubd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐴 ↑𝑐 𝑘 ) ) ) |
| 901 | 868 | nn0zd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 902 | 877 878 901 | exprecd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 1 / ( 𝐴 ↑ 𝑘 ) ) ) |
| 903 | cxpexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 904 | 877 868 903 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 905 | 904 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) = ( 1 / ( 𝐴 ↑ 𝑘 ) ) ) |
| 906 | 902 905 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) |
| 907 | 906 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐴 ↑𝑐 𝑘 ) ) ) ) |
| 908 | 898 900 907 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) = ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) |
| 909 | 908 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) ) |
| 910 | 899 895 | subcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 − 𝑘 ) ∈ ℂ ) |
| 911 | 877 910 | cxpcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ∈ ℂ ) |
| 912 | 733 885 911 | mul32d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 913 | 894 909 912 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 914 | 733 911 885 | mulassd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 915 | 913 914 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 916 | 915 | sumeq2dv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 ( ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 917 | 875 916 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐵 / 𝐴 ) ↑ 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐶 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 918 | 825 866 917 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐶 C𝑐 𝑘 ) · ( ( 𝐴 ↑𝑐 ( 𝐶 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |