Metamath Proof Explorer


Theorem ofdivcan4

Description: Function analogue of divcan4 . (Contributed by Steve Rodriguez, 4-Nov-2015)

Ref Expression
Assertion ofdivcan4 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) ∘f / 𝐺 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐴𝑉 )
2 simp2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 : 𝐴 ⟶ ℂ )
3 2 ffnd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 Fn 𝐴 )
4 simp3 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) )
5 4 ffnd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 Fn 𝐴 )
6 inidm ( 𝐴𝐴 ) = 𝐴
7 3 5 1 1 6 offn ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( 𝐹f · 𝐺 ) Fn 𝐴 )
8 eqidd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
9 eqidd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
10 3 5 1 1 6 8 9 ofval ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( ( 𝐹f · 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) )
11 ffvelrn ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℂ )
12 2 11 sylan ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℂ )
13 ffvelrn ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥𝐴 ) → ( 𝐺𝑥 ) ∈ ( ℂ ∖ { 0 } ) )
14 eldifsn ( ( 𝐺𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐺𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ≠ 0 ) )
15 13 14 sylib ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥𝐴 ) → ( ( 𝐺𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ≠ 0 ) )
16 4 15 sylan ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( ( 𝐺𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ≠ 0 ) )
17 divcan4 ( ( ( 𝐹𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ≠ 0 ) → ( ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) / ( 𝐺𝑥 ) ) = ( 𝐹𝑥 ) )
18 17 3expb ( ( ( 𝐹𝑥 ) ∈ ℂ ∧ ( ( 𝐺𝑥 ) ∈ ℂ ∧ ( 𝐺𝑥 ) ≠ 0 ) ) → ( ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) / ( 𝐺𝑥 ) ) = ( 𝐹𝑥 ) )
19 12 16 18 syl2anc ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥𝐴 ) → ( ( ( 𝐹𝑥 ) · ( 𝐺𝑥 ) ) / ( 𝐺𝑥 ) ) = ( 𝐹𝑥 ) )
20 1 7 5 3 10 9 19 offveq ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝐹f · 𝐺 ) ∘f / 𝐺 ) = 𝐹 )