Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 Fn 𝐴 ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
5 |
4
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 Fn 𝐴 ) |
6 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
7 |
3 5 1 1 6
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ∘f · 𝐺 ) Fn 𝐴 ) |
8 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
10 |
3 5 1 1 6 8 9
|
ofval |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
11 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
12 |
2 11
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
13 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
14 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
16 |
4 15
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
17 |
|
divcan4 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
18 |
17
|
3expb |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
12 16 18
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
20 |
1 7 5 3 10 9 19
|
offveq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝐹 ∘f · 𝐺 ) ∘f / 𝐺 ) = 𝐹 ) |