Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐹 Fn 𝐴 ) |
4 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
5 |
4
|
ffnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐺 Fn 𝐴 ) |
6 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
7 |
6
|
ffnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → 𝐻 Fn 𝐴 ) |
8 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
9 |
5 7 1 1 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → ( 𝐺 ∘f / 𝐻 ) Fn 𝐴 ) |
10 |
3 7 1 1 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → ( 𝐹 ∘f · 𝐻 ) Fn 𝐴 ) |
11 |
10 5 1 1 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → ( ( 𝐹 ∘f · 𝐻 ) ∘f / 𝐺 ) Fn 𝐴 ) |
12 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
13 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘f / 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ∘f / 𝐻 ) ‘ 𝑥 ) ) |
14 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
15 |
2 14
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
16 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
17 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
19 |
4 18
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
20 |
|
ffvelrn |
⊢ ( ( 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
21 |
|
eldifsn |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐻 ‘ 𝑥 ) ≠ 0 ) ) |
22 |
20 21
|
sylib |
⊢ ( ( 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐻 ‘ 𝑥 ) ≠ 0 ) ) |
23 |
6 22
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐻 ‘ 𝑥 ) ≠ 0 ) ) |
24 |
|
divdiv2 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ∧ ( ( 𝐻 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐻 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) / ( ( 𝐺 ‘ 𝑥 ) / ( 𝐻 ‘ 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) ) |
25 |
15 19 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) / ( ( 𝐺 ‘ 𝑥 ) / ( 𝐻 ‘ 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) ) |
26 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
27 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
28 |
5 7 1 1 8 26 27
|
ofval |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘f / 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) / ( 𝐻 ‘ 𝑥 ) ) ) |
29 |
28
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) / ( ( 𝐺 ∘f / 𝐻 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) / ( ( 𝐺 ‘ 𝑥 ) / ( 𝐻 ‘ 𝑥 ) ) ) ) |
30 |
3 7 1 1 8 12 27
|
ofval |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
31 |
10 5 1 1 8 30 26
|
ofval |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f · 𝐻 ) ∘f / 𝐺 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) / ( 𝐺 ‘ 𝑥 ) ) ) |
32 |
25 29 31
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) / ( ( 𝐺 ∘f / 𝐻 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ∘f · 𝐻 ) ∘f / 𝐺 ) ‘ 𝑥 ) ) |
33 |
1 3 9 11 12 13 32
|
offveq |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝐻 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ) → ( 𝐹 ∘f / ( 𝐺 ∘f / 𝐻 ) ) = ( ( 𝐹 ∘f · 𝐻 ) ∘f / 𝐺 ) ) |