Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> A e. V ) |
2 |
|
simplr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> F : A --> CC ) |
3 |
2
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> F Fn A ) |
4 |
|
simprl |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> G : A --> ( CC \ { 0 } ) ) |
5 |
4
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> G Fn A ) |
6 |
|
simprr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> H : A --> ( CC \ { 0 } ) ) |
7 |
6
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> H Fn A ) |
8 |
|
inidm |
|- ( A i^i A ) = A |
9 |
5 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( G oF / H ) Fn A ) |
10 |
3 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( F oF x. H ) Fn A ) |
11 |
10 5 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( ( F oF x. H ) oF / G ) Fn A ) |
12 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
13 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G oF / H ) ` x ) = ( ( G oF / H ) ` x ) ) |
14 |
|
ffvelrn |
|- ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) |
15 |
2 14
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
16 |
|
ffvelrn |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
17 |
|
eldifsn |
|- ( ( G ` x ) e. ( CC \ { 0 } ) <-> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
18 |
16 17
|
sylib |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
19 |
4 18
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
20 |
|
ffvelrn |
|- ( ( H : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( H ` x ) e. ( CC \ { 0 } ) ) |
21 |
|
eldifsn |
|- ( ( H ` x ) e. ( CC \ { 0 } ) <-> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
22 |
20 21
|
sylib |
|- ( ( H : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
23 |
6 22
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
24 |
|
divdiv2 |
|- ( ( ( F ` x ) e. CC /\ ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) /\ ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) -> ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
25 |
15 19 23 24
|
syl3anc |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
26 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
27 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( H ` x ) = ( H ` x ) ) |
28 |
5 7 1 1 8 26 27
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G oF / H ) ` x ) = ( ( G ` x ) / ( H ` x ) ) ) |
29 |
28
|
oveq2d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G oF / H ) ` x ) ) = ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) ) |
30 |
3 7 1 1 8 12 27
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F oF x. H ) ` x ) = ( ( F ` x ) x. ( H ` x ) ) ) |
31 |
10 5 1 1 8 30 26
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( ( F oF x. H ) oF / G ) ` x ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
32 |
25 29 31
|
3eqtr4d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G oF / H ) ` x ) ) = ( ( ( F oF x. H ) oF / G ) ` x ) ) |
33 |
1 3 9 11 12 13 32
|
offveq |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( F oF / ( G oF / H ) ) = ( ( F oF x. H ) oF / G ) ) |