| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> A e. V ) |
| 2 |
|
simplr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> F : A --> CC ) |
| 3 |
2
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> F Fn A ) |
| 4 |
|
simprl |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> G : A --> ( CC \ { 0 } ) ) |
| 5 |
4
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> G Fn A ) |
| 6 |
|
simprr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> H : A --> ( CC \ { 0 } ) ) |
| 7 |
6
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> H Fn A ) |
| 8 |
|
inidm |
|- ( A i^i A ) = A |
| 9 |
5 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( G oF / H ) Fn A ) |
| 10 |
3 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( F oF x. H ) Fn A ) |
| 11 |
10 5 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( ( F oF x. H ) oF / G ) Fn A ) |
| 12 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 13 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G oF / H ) ` x ) = ( ( G oF / H ) ` x ) ) |
| 14 |
|
ffvelcdm |
|- ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) |
| 15 |
2 14
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 16 |
|
ffvelcdm |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
| 17 |
|
eldifsn |
|- ( ( G ` x ) e. ( CC \ { 0 } ) <-> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
| 18 |
16 17
|
sylib |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
| 19 |
4 18
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
| 20 |
|
ffvelcdm |
|- ( ( H : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( H ` x ) e. ( CC \ { 0 } ) ) |
| 21 |
|
eldifsn |
|- ( ( H ` x ) e. ( CC \ { 0 } ) <-> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
| 22 |
20 21
|
sylib |
|- ( ( H : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
| 23 |
6 22
|
sylan |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) |
| 24 |
|
divdiv2 |
|- ( ( ( F ` x ) e. CC /\ ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) /\ ( ( H ` x ) e. CC /\ ( H ` x ) =/= 0 ) ) -> ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
| 25 |
15 19 23 24
|
syl3anc |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
| 26 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
| 27 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( H ` x ) = ( H ` x ) ) |
| 28 |
5 7 1 1 8 26 27
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( G oF / H ) ` x ) = ( ( G ` x ) / ( H ` x ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G oF / H ) ` x ) ) = ( ( F ` x ) / ( ( G ` x ) / ( H ` x ) ) ) ) |
| 30 |
3 7 1 1 8 12 27
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F oF x. H ) ` x ) = ( ( F ` x ) x. ( H ` x ) ) ) |
| 31 |
10 5 1 1 8 30 26
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( ( F oF x. H ) oF / G ) ` x ) = ( ( ( F ` x ) x. ( H ` x ) ) / ( G ` x ) ) ) |
| 32 |
25 29 31
|
3eqtr4d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) /\ x e. A ) -> ( ( F ` x ) / ( ( G oF / H ) ` x ) ) = ( ( ( F oF x. H ) oF / G ) ` x ) ) |
| 33 |
1 3 9 11 12 13 32
|
offveq |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> ( CC \ { 0 } ) /\ H : A --> ( CC \ { 0 } ) ) ) -> ( F oF / ( G oF / H ) ) = ( ( F oF x. H ) oF / G ) ) |