| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
simplr |
|
| 3 |
2
|
ffnd |
|
| 4 |
|
simprl |
|
| 5 |
4
|
ffnd |
|
| 6 |
|
simprr |
|
| 7 |
6
|
ffnd |
|
| 8 |
|
inidm |
|
| 9 |
5 7 1 1 8
|
offn |
|
| 10 |
3 7 1 1 8
|
offn |
|
| 11 |
10 5 1 1 8
|
offn |
|
| 12 |
|
eqidd |
|
| 13 |
|
eqidd |
|
| 14 |
|
ffvelcdm |
|
| 15 |
2 14
|
sylan |
|
| 16 |
|
ffvelcdm |
|
| 17 |
|
eldifsn |
|
| 18 |
16 17
|
sylib |
|
| 19 |
4 18
|
sylan |
|
| 20 |
|
ffvelcdm |
|
| 21 |
|
eldifsn |
|
| 22 |
20 21
|
sylib |
|
| 23 |
6 22
|
sylan |
|
| 24 |
|
divdiv2 |
|
| 25 |
15 19 23 24
|
syl3anc |
|
| 26 |
|
eqidd |
|
| 27 |
|
eqidd |
|
| 28 |
5 7 1 1 8 26 27
|
ofval |
|
| 29 |
28
|
oveq2d |
|
| 30 |
3 7 1 1 8 12 27
|
ofval |
|
| 31 |
10 5 1 1 8 30 26
|
ofval |
|
| 32 |
25 29 31
|
3eqtr4d |
|
| 33 |
1 3 9 11 12 13 32
|
offveq |
|