Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> A e. V ) |
2 |
|
simp2 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> F : A --> CC ) |
3 |
2
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> F Fn A ) |
4 |
|
simp3 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> G : A --> ( CC \ { 0 } ) ) |
5 |
4
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> G Fn A ) |
6 |
|
inidm |
|- ( A i^i A ) = A |
7 |
3 5 1 1 6
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( F oF x. G ) Fn A ) |
8 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
9 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
10 |
3 5 1 1 6 8 9
|
ofval |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( F oF x. G ) ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) |
11 |
|
ffvelrn |
|- ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) |
12 |
2 11
|
sylan |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
13 |
|
ffvelrn |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
14 |
|
eldifsn |
|- ( ( G ` x ) e. ( CC \ { 0 } ) <-> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
15 |
13 14
|
sylib |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
16 |
4 15
|
sylan |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
17 |
|
divcan4 |
|- ( ( ( F ` x ) e. CC /\ ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) -> ( ( ( F ` x ) x. ( G ` x ) ) / ( G ` x ) ) = ( F ` x ) ) |
18 |
17
|
3expb |
|- ( ( ( F ` x ) e. CC /\ ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) -> ( ( ( F ` x ) x. ( G ` x ) ) / ( G ` x ) ) = ( F ` x ) ) |
19 |
12 16 18
|
syl2anc |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( ( F ` x ) x. ( G ` x ) ) / ( G ` x ) ) = ( F ` x ) ) |
20 |
1 7 5 3 10 9 19
|
offveq |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( ( F oF x. G ) oF / G ) = F ) |