Description: Lemma for binomcxp . When C is not a nonnegative integer, the generalized sum in binomcxplemnn0 —which we will call P —is a convergent power series: its base b is always of smaller absolute value than the radius of convergence.
pserdv2 gives the derivative of P , which by dvradcnv also converges in that radius. When A is fixed at one, ( A + b ) times that derivative equals ( C x. P ) and fraction ( P / ( ( A + b ) ^c C ) ) is always defined with derivative zero, so the fraction is a constant—specifically one, because ( ( 1 + 0 ) ^c C ) = 1 . Thus ( ( 1 + b ) ^c C ) = ( Pb ) .
Finally, let b be ( B / A ) , and multiply both the binomial ( ( 1 + ( B / A ) ) ^c C ) and the sum ( P( B / A ) ) by ( A ^c C ) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | binomcxp.a | |- ( ph -> A e. RR+ ) |
|
binomcxp.b | |- ( ph -> B e. RR ) |
||
binomcxp.lt | |- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
||
binomcxp.c | |- ( ph -> C e. CC ) |
||
binomcxplem.f | |- F = ( j e. NN0 |-> ( C _Cc j ) ) |
||
binomcxplem.s | |- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
||
binomcxplem.r | |- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
||
binomcxplem.e | |- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
||
binomcxplem.d | |- D = ( `' abs " ( 0 [,) R ) ) |
||
binomcxplem.p | |- P = ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) |
||
Assertion | binomcxplemnotnn0 | |- ( ( ph /\ -. C e. NN0 ) -> ( ( A + B ) ^c C ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | |- ( ph -> A e. RR+ ) |
|
2 | binomcxp.b | |- ( ph -> B e. RR ) |
|
3 | binomcxp.lt | |- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
|
4 | binomcxp.c | |- ( ph -> C e. CC ) |
|
5 | binomcxplem.f | |- F = ( j e. NN0 |-> ( C _Cc j ) ) |
|
6 | binomcxplem.s | |- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
|
7 | binomcxplem.r | |- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
|
8 | binomcxplem.e | |- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
|
9 | binomcxplem.d | |- D = ( `' abs " ( 0 [,) R ) ) |
|
10 | binomcxplem.p | |- P = ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) |
|
11 | nfcv | |- F/_ b `' abs |
|
12 | nfcv | |- F/_ b 0 |
|
13 | nfcv | |- F/_ b [,) |
|
14 | nfcv | |- F/_ b + |
|
15 | nfmpt1 | |- F/_ b ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
|
16 | 6 15 | nfcxfr | |- F/_ b S |
17 | nfcv | |- F/_ b r |
|
18 | 16 17 | nffv | |- F/_ b ( S ` r ) |
19 | 12 14 18 | nfseq | |- F/_ b seq 0 ( + , ( S ` r ) ) |
20 | 19 | nfel1 | |- F/ b seq 0 ( + , ( S ` r ) ) e. dom ~~> |
21 | nfcv | |- F/_ b RR |
|
22 | 20 21 | nfrabw | |- F/_ b { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } |
23 | nfcv | |- F/_ b RR* |
|
24 | nfcv | |- F/_ b < |
|
25 | 22 23 24 | nfsup | |- F/_ b sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
26 | 7 25 | nfcxfr | |- F/_ b R |
27 | 12 13 26 | nfov | |- F/_ b ( 0 [,) R ) |
28 | 11 27 | nfima | |- F/_ b ( `' abs " ( 0 [,) R ) ) |
29 | 9 28 | nfcxfr | |- F/_ b D |
30 | nfcv | |- F/_ x D |
|
31 | nfcv | |- F/_ x sum_ k e. NN0 ( ( S ` b ) ` k ) |
|
32 | nfcv | |- F/_ b NN0 |
|
33 | nfcv | |- F/_ b x |
|
34 | 16 33 | nffv | |- F/_ b ( S ` x ) |
35 | nfcv | |- F/_ b k |
|
36 | 34 35 | nffv | |- F/_ b ( ( S ` x ) ` k ) |
37 | 32 36 | nfsum | |- F/_ b sum_ k e. NN0 ( ( S ` x ) ` k ) |
38 | simpl | |- ( ( b = x /\ k e. NN0 ) -> b = x ) |
|
39 | 38 | fveq2d | |- ( ( b = x /\ k e. NN0 ) -> ( S ` b ) = ( S ` x ) ) |
40 | 39 | fveq1d | |- ( ( b = x /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( S ` x ) ` k ) ) |
41 | 40 | sumeq2dv | |- ( b = x -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ k e. NN0 ( ( S ` x ) ` k ) ) |
42 | 29 30 31 37 41 | cbvmptf | |- ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) = ( x e. D |-> sum_ k e. NN0 ( ( S ` x ) ` k ) ) |
43 | 10 42 | eqtri | |- P = ( x e. D |-> sum_ k e. NN0 ( ( S ` x ) ` k ) ) |
44 | 43 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> P = ( x e. D |-> sum_ k e. NN0 ( ( S ` x ) ` k ) ) ) |
45 | simplr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) /\ k e. NN0 ) -> x = ( B / A ) ) |
|
46 | 45 | fveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) /\ k e. NN0 ) -> ( S ` x ) = ( S ` ( B / A ) ) ) |
47 | 46 | fveq1d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) /\ k e. NN0 ) -> ( ( S ` x ) ` k ) = ( ( S ` ( B / A ) ) ` k ) ) |
48 | 47 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) -> sum_ k e. NN0 ( ( S ` x ) ` k ) = sum_ k e. NN0 ( ( S ` ( B / A ) ) ` k ) ) |
49 | 2 | recnd | |- ( ph -> B e. CC ) |
50 | 49 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> B e. CC ) |
51 | 1 | rpcnd | |- ( ph -> A e. CC ) |
52 | 51 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> A e. CC ) |
53 | 0red | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. RR ) |
|
54 | 50 | abscld | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` B ) e. RR ) |
55 | 52 | abscld | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` A ) e. RR ) |
56 | 50 | absge0d | |- ( ( ph /\ -. C e. NN0 ) -> 0 <_ ( abs ` B ) ) |
57 | 3 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` B ) < ( abs ` A ) ) |
58 | 53 54 55 56 57 | lelttrd | |- ( ( ph /\ -. C e. NN0 ) -> 0 < ( abs ` A ) ) |
59 | 58 | gt0ne0d | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` A ) =/= 0 ) |
60 | 52 | abs00ad | |- ( ( ph /\ -. C e. NN0 ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
61 | 60 | necon3bid | |- ( ( ph /\ -. C e. NN0 ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
62 | 59 61 | mpbid | |- ( ( ph /\ -. C e. NN0 ) -> A =/= 0 ) |
63 | 50 52 62 | divcld | |- ( ( ph /\ -. C e. NN0 ) -> ( B / A ) e. CC ) |
64 | 63 | abscld | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` ( B / A ) ) e. RR ) |
65 | 63 | absge0d | |- ( ( ph /\ -. C e. NN0 ) -> 0 <_ ( abs ` ( B / A ) ) ) |
66 | 55 | recnd | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` A ) e. CC ) |
67 | 66 | mulid1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( abs ` A ) x. 1 ) = ( abs ` A ) ) |
68 | 57 67 | breqtrrd | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` B ) < ( ( abs ` A ) x. 1 ) ) |
69 | 1red | |- ( ( ph /\ -. C e. NN0 ) -> 1 e. RR ) |
|
70 | 55 58 | elrpd | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` A ) e. RR+ ) |
71 | 54 69 70 | ltdivmuld | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( abs ` B ) / ( abs ` A ) ) < 1 <-> ( abs ` B ) < ( ( abs ` A ) x. 1 ) ) ) |
72 | 68 71 | mpbird | |- ( ( ph /\ -. C e. NN0 ) -> ( ( abs ` B ) / ( abs ` A ) ) < 1 ) |
73 | 50 52 62 | absdivd | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` ( B / A ) ) = ( ( abs ` B ) / ( abs ` A ) ) ) |
74 | 1 2 3 4 5 6 7 | binomcxplemradcnv | |- ( ( ph /\ -. C e. NN0 ) -> R = 1 ) |
75 | 72 73 74 | 3brtr4d | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` ( B / A ) ) < R ) |
76 | 0re | |- 0 e. RR |
|
77 | ssrab2 | |- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR |
|
78 | ressxr | |- RR C_ RR* |
|
79 | 77 78 | sstri | |- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* |
80 | supxrcl | |- ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
|
81 | 79 80 | ax-mp | |- sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* |
82 | 7 81 | eqeltri | |- R e. RR* |
83 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` ( B / A ) ) e. ( 0 [,) R ) <-> ( ( abs ` ( B / A ) ) e. RR /\ 0 <_ ( abs ` ( B / A ) ) /\ ( abs ` ( B / A ) ) < R ) ) ) |
|
84 | 76 82 83 | mp2an | |- ( ( abs ` ( B / A ) ) e. ( 0 [,) R ) <-> ( ( abs ` ( B / A ) ) e. RR /\ 0 <_ ( abs ` ( B / A ) ) /\ ( abs ` ( B / A ) ) < R ) ) |
85 | 64 65 75 84 | syl3anbrc | |- ( ( ph /\ -. C e. NN0 ) -> ( abs ` ( B / A ) ) e. ( 0 [,) R ) ) |
86 | 9 | eleq2i | |- ( ( B / A ) e. D <-> ( B / A ) e. ( `' abs " ( 0 [,) R ) ) ) |
87 | absf | |- abs : CC --> RR |
|
88 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
89 | elpreima | |- ( abs Fn CC -> ( ( B / A ) e. ( `' abs " ( 0 [,) R ) ) <-> ( ( B / A ) e. CC /\ ( abs ` ( B / A ) ) e. ( 0 [,) R ) ) ) ) |
|
90 | 87 88 89 | mp2b | |- ( ( B / A ) e. ( `' abs " ( 0 [,) R ) ) <-> ( ( B / A ) e. CC /\ ( abs ` ( B / A ) ) e. ( 0 [,) R ) ) ) |
91 | 86 90 | bitri | |- ( ( B / A ) e. D <-> ( ( B / A ) e. CC /\ ( abs ` ( B / A ) ) e. ( 0 [,) R ) ) ) |
92 | 63 85 91 | sylanbrc | |- ( ( ph /\ -. C e. NN0 ) -> ( B / A ) e. D ) |
93 | sumex | |- sum_ k e. NN0 ( ( S ` ( B / A ) ) ` k ) e. _V |
|
94 | 93 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN0 ( ( S ` ( B / A ) ) ` k ) e. _V ) |
95 | 44 48 92 94 | fvmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( P ` ( B / A ) ) = sum_ k e. NN0 ( ( S ` ( B / A ) ) ` k ) ) |
96 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
97 | 96 | cnbl0 | |- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
98 | 82 97 | ax-mp | |- ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) |
99 | 9 98 | eqtri | |- D = ( 0 ( ball ` ( abs o. - ) ) R ) |
100 | 0cnd | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. CC ) |
|
101 | 82 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> R e. RR* ) |
102 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
103 | 102 | adantl | |- ( ( ( ph /\ -. C e. NN0 ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
104 | nfv | |- F/ b ( ph /\ -. C e. NN0 ) |
|
105 | 29 | nfcri | |- F/ b x e. D |
106 | 104 105 | nfan | |- F/ b ( ( ph /\ -. C e. NN0 ) /\ x e. D ) |
107 | 37 | nfel1 | |- F/ b sum_ k e. NN0 ( ( S ` x ) ` k ) e. CC |
108 | 106 107 | nfim | |- F/ b ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> sum_ k e. NN0 ( ( S ` x ) ` k ) e. CC ) |
109 | eleq1 | |- ( b = x -> ( b e. D <-> x e. D ) ) |
|
110 | 109 | anbi2d | |- ( b = x -> ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) <-> ( ( ph /\ -. C e. NN0 ) /\ x e. D ) ) ) |
111 | 41 | eleq1d | |- ( b = x -> ( sum_ k e. NN0 ( ( S ` b ) ` k ) e. CC <-> sum_ k e. NN0 ( ( S ` x ) ` k ) e. CC ) ) |
112 | 110 111 | imbi12d | |- ( b = x -> ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( S ` b ) ` k ) e. CC ) <-> ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> sum_ k e. NN0 ( ( S ` x ) ` k ) e. CC ) ) ) |
113 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
114 | 0zd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> 0 e. ZZ ) |
|
115 | eqidd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( S ` b ) ` k ) ) |
|
116 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
117 | 9 116 | eqsstri | |- D C_ dom abs |
118 | 87 | fdmi | |- dom abs = CC |
119 | 117 118 | sseqtri | |- D C_ CC |
120 | 119 | sseli | |- ( b e. D -> b e. CC ) |
121 | 6 | a1i | |- ( ph -> S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ) |
122 | nn0ex | |- NN0 e. _V |
|
123 | 122 | mptex | |- ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) e. _V |
124 | 123 | a1i | |- ( ( ph /\ b e. CC ) -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) e. _V ) |
125 | 121 124 | fvmpt2d | |- ( ( ph /\ b e. CC ) -> ( S ` b ) = ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
126 | ovexd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) e. _V ) |
|
127 | 125 126 | fvmpt2d | |- ( ( ( ph /\ b e. CC ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( F ` k ) x. ( b ^ k ) ) ) |
128 | 5 | a1i | |- ( ( ph /\ k e. NN0 ) -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
129 | simpr | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) |
|
130 | 129 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( C _Cc j ) = ( C _Cc k ) ) |
131 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
132 | ovexd | |- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. _V ) |
|
133 | 128 130 131 132 | fvmptd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
134 | 133 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
135 | 134 | adantlr | |- ( ( ( ph /\ b e. CC ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
136 | 127 135 | eqtrd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
137 | 120 136 | sylanl2 | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
138 | 4 | ad2antrr | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> C e. CC ) |
139 | simpr | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> k e. NN0 ) |
|
140 | 138 139 | bcccl | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
141 | 120 | ad2antlr | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> b e. CC ) |
142 | 141 139 | expcld | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( b ^ k ) e. CC ) |
143 | 140 142 | mulcld | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( b ^ k ) ) e. CC ) |
144 | 137 143 | eqeltrd | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) e. CC ) |
145 | 144 | adantllr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) e. CC ) |
146 | eleq1 | |- ( x = b -> ( x e. D <-> b e. D ) ) |
|
147 | 146 | anbi2d | |- ( x = b -> ( ( ph /\ x e. D ) <-> ( ph /\ b e. D ) ) ) |
148 | fveq2 | |- ( x = b -> ( S ` x ) = ( S ` b ) ) |
|
149 | 148 | seqeq3d | |- ( x = b -> seq 0 ( + , ( S ` x ) ) = seq 0 ( + , ( S ` b ) ) ) |
150 | 149 | eleq1d | |- ( x = b -> ( seq 0 ( + , ( S ` x ) ) e. dom ~~> <-> seq 0 ( + , ( S ` b ) ) e. dom ~~> ) ) |
151 | fveq2 | |- ( x = b -> ( E ` x ) = ( E ` b ) ) |
|
152 | 151 | seqeq3d | |- ( x = b -> seq 1 ( + , ( E ` x ) ) = seq 1 ( + , ( E ` b ) ) ) |
153 | 152 | eleq1d | |- ( x = b -> ( seq 1 ( + , ( E ` x ) ) e. dom ~~> <-> seq 1 ( + , ( E ` b ) ) e. dom ~~> ) ) |
154 | 150 153 | anbi12d | |- ( x = b -> ( ( seq 0 ( + , ( S ` x ) ) e. dom ~~> /\ seq 1 ( + , ( E ` x ) ) e. dom ~~> ) <-> ( seq 0 ( + , ( S ` b ) ) e. dom ~~> /\ seq 1 ( + , ( E ` b ) ) e. dom ~~> ) ) ) |
155 | 147 154 | imbi12d | |- ( x = b -> ( ( ( ph /\ x e. D ) -> ( seq 0 ( + , ( S ` x ) ) e. dom ~~> /\ seq 1 ( + , ( E ` x ) ) e. dom ~~> ) ) <-> ( ( ph /\ b e. D ) -> ( seq 0 ( + , ( S ` b ) ) e. dom ~~> /\ seq 1 ( + , ( E ` b ) ) e. dom ~~> ) ) ) ) |
156 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | |- ( ( ph /\ x e. D ) -> ( seq 0 ( + , ( S ` x ) ) e. dom ~~> /\ seq 1 ( + , ( E ` x ) ) e. dom ~~> ) ) |
157 | 155 156 | chvarvv | |- ( ( ph /\ b e. D ) -> ( seq 0 ( + , ( S ` b ) ) e. dom ~~> /\ seq 1 ( + , ( E ` b ) ) e. dom ~~> ) ) |
158 | 157 | simpld | |- ( ( ph /\ b e. D ) -> seq 0 ( + , ( S ` b ) ) e. dom ~~> ) |
159 | 158 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 0 ( + , ( S ` b ) ) e. dom ~~> ) |
160 | 113 114 115 145 159 | isumcl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( S ` b ) ` k ) e. CC ) |
161 | 108 112 160 | chvarfv | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> sum_ k e. NN0 ( ( S ` x ) ` k ) e. CC ) |
162 | 161 43 | fmptd | |- ( ( ph /\ -. C e. NN0 ) -> P : D --> CC ) |
163 | 1cnd | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> 1 e. CC ) |
|
164 | 119 | sseli | |- ( x e. D -> x e. CC ) |
165 | 164 | adantl | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> x e. CC ) |
166 | 163 165 | addcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( 1 + x ) e. CC ) |
167 | 4 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> C e. CC ) |
168 | 167 | negcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> -u C e. CC ) |
169 | 166 168 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( ( 1 + x ) ^c -u C ) e. CC ) |
170 | nfcv | |- F/_ x ( ( 1 + b ) ^c -u C ) |
|
171 | nfcv | |- F/_ b ( ( 1 + x ) ^c -u C ) |
|
172 | oveq2 | |- ( b = x -> ( 1 + b ) = ( 1 + x ) ) |
|
173 | 172 | oveq1d | |- ( b = x -> ( ( 1 + b ) ^c -u C ) = ( ( 1 + x ) ^c -u C ) ) |
174 | 29 30 170 171 173 | cbvmptf | |- ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) = ( x e. D |-> ( ( 1 + x ) ^c -u C ) ) |
175 | 169 174 | fmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) : D --> CC ) |
176 | cnex | |- CC e. _V |
|
177 | fex | |- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
|
178 | 87 176 177 | mp2an | |- abs e. _V |
179 | 178 | cnvex | |- `' abs e. _V |
180 | imaexg | |- ( `' abs e. _V -> ( `' abs " ( 0 [,) R ) ) e. _V ) |
|
181 | 179 180 | ax-mp | |- ( `' abs " ( 0 [,) R ) ) e. _V |
182 | 9 181 | eqeltri | |- D e. _V |
183 | 182 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> D e. _V ) |
184 | inidm | |- ( D i^i D ) = D |
|
185 | 103 162 175 183 183 184 | off | |- ( ( ph /\ -. C e. NN0 ) -> ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) : D --> CC ) |
186 | 1ex | |- 1 e. _V |
|
187 | 186 | fconst | |- ( D X. { 1 } ) : D --> { 1 } |
188 | fconstmpt | |- ( D X. { 1 } ) = ( x e. D |-> 1 ) |
|
189 | nfcv | |- F/_ b 1 |
|
190 | nfcv | |- F/_ x 1 |
|
191 | eqidd | |- ( x = b -> 1 = 1 ) |
|
192 | 30 29 189 190 191 | cbvmptf | |- ( x e. D |-> 1 ) = ( b e. D |-> 1 ) |
193 | 188 192 | eqtri | |- ( D X. { 1 } ) = ( b e. D |-> 1 ) |
194 | 193 | feq1i | |- ( ( D X. { 1 } ) : D --> { 1 } <-> ( b e. D |-> 1 ) : D --> { 1 } ) |
195 | 187 194 | mpbi | |- ( b e. D |-> 1 ) : D --> { 1 } |
196 | ax-1cn | |- 1 e. CC |
|
197 | snssi | |- ( 1 e. CC -> { 1 } C_ CC ) |
|
198 | 196 197 | ax-mp | |- { 1 } C_ CC |
199 | fss | |- ( ( ( b e. D |-> 1 ) : D --> { 1 } /\ { 1 } C_ CC ) -> ( b e. D |-> 1 ) : D --> CC ) |
|
200 | 195 198 199 | mp2an | |- ( b e. D |-> 1 ) : D --> CC |
201 | 200 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> 1 ) : D --> CC ) |
202 | cnelprrecn | |- CC e. { RR , CC } |
|
203 | 202 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> CC e. { RR , CC } ) |
204 | 1 2 3 4 5 6 7 8 9 10 | binomcxplemdvsum | |- ( ph -> ( CC _D P ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) ) |
205 | 204 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D P ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) ) |
206 | nfcv | |- F/_ x sum_ k e. NN ( ( E ` b ) ` k ) |
|
207 | nfcv | |- F/_ b NN |
|
208 | nfmpt1 | |- F/_ b ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
|
209 | 8 208 | nfcxfr | |- F/_ b E |
210 | 209 33 | nffv | |- F/_ b ( E ` x ) |
211 | 210 35 | nffv | |- F/_ b ( ( E ` x ) ` k ) |
212 | 207 211 | nfsum | |- F/_ b sum_ k e. NN ( ( E ` x ) ` k ) |
213 | simpl | |- ( ( b = x /\ k e. NN ) -> b = x ) |
|
214 | 213 | fveq2d | |- ( ( b = x /\ k e. NN ) -> ( E ` b ) = ( E ` x ) ) |
215 | 214 | fveq1d | |- ( ( b = x /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( E ` x ) ` k ) ) |
216 | 215 | sumeq2dv | |- ( b = x -> sum_ k e. NN ( ( E ` b ) ` k ) = sum_ k e. NN ( ( E ` x ) ` k ) ) |
217 | 29 30 206 212 216 | cbvmptf | |- ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) = ( x e. D |-> sum_ k e. NN ( ( E ` x ) ` k ) ) |
218 | 205 217 | eqtrdi | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D P ) = ( x e. D |-> sum_ k e. NN ( ( E ` x ) ` k ) ) ) |
219 | sumex | |- sum_ k e. NN ( ( E ` x ) ` k ) e. _V |
|
220 | 219 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> sum_ k e. NN ( ( E ` x ) ` k ) e. _V ) |
221 | 218 220 | fmpt3d | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D P ) : D --> _V ) |
222 | 221 | fdmd | |- ( ( ph /\ -. C e. NN0 ) -> dom ( CC _D P ) = D ) |
223 | 1 2 3 4 5 6 7 8 9 | binomcxplemdvbinom | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) ) |
224 | nfcv | |- F/_ x ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) |
|
225 | nfcv | |- F/_ b ( -u C x. ( ( 1 + x ) ^c ( -u C - 1 ) ) ) |
|
226 | 172 | oveq1d | |- ( b = x -> ( ( 1 + b ) ^c ( -u C - 1 ) ) = ( ( 1 + x ) ^c ( -u C - 1 ) ) ) |
227 | 226 | oveq2d | |- ( b = x -> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) = ( -u C x. ( ( 1 + x ) ^c ( -u C - 1 ) ) ) ) |
228 | 29 30 224 225 227 | cbvmptf | |- ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) = ( x e. D |-> ( -u C x. ( ( 1 + x ) ^c ( -u C - 1 ) ) ) ) |
229 | 223 228 | eqtrdi | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( x e. D |-> ( -u C x. ( ( 1 + x ) ^c ( -u C - 1 ) ) ) ) ) |
230 | 168 163 | subcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( -u C - 1 ) e. CC ) |
231 | 166 230 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( ( 1 + x ) ^c ( -u C - 1 ) ) e. CC ) |
232 | 168 231 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( -u C x. ( ( 1 + x ) ^c ( -u C - 1 ) ) ) e. CC ) |
233 | 229 232 | fmpt3d | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) : D --> CC ) |
234 | 233 | fdmd | |- ( ( ph /\ -. C e. NN0 ) -> dom ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = D ) |
235 | 203 162 175 222 234 | dvmulf | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = ( ( ( CC _D P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF + ( ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF x. P ) ) ) |
236 | 4 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> C e. CC ) |
237 | 236 | mulid1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. 1 ) = C ) |
238 | 237 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C x. 1 ) + ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) = ( C + ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) ) |
239 | 1cnd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> 1 e. CC ) |
|
240 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
241 | 1zzd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> 1 e. ZZ ) |
|
242 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
243 | 242 137 | sylan2 | |- ( ( ( ph /\ b e. D ) /\ k e. NN ) -> ( ( S ` b ) ` k ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
244 | 243 | adantllr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( S ` b ) ` k ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
245 | 4 | ad3antrrr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> C e. CC ) |
246 | simpr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> k e. NN0 ) |
|
247 | 245 246 | bcccl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
248 | 242 247 | sylan2 | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( C _Cc k ) e. CC ) |
249 | 120 | adantl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> b e. CC ) |
250 | 249 | adantr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> b e. CC ) |
251 | 250 246 | expcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( b ^ k ) e. CC ) |
252 | 242 251 | sylan2 | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b ^ k ) e. CC ) |
253 | 248 252 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( C _Cc k ) x. ( b ^ k ) ) e. CC ) |
254 | 1nn0 | |- 1 e. NN0 |
|
255 | 254 | a1i | |- ( ( ph /\ b e. D ) -> 1 e. NN0 ) |
256 | 113 255 144 | iserex | |- ( ( ph /\ b e. D ) -> ( seq 0 ( + , ( S ` b ) ) e. dom ~~> <-> seq 1 ( + , ( S ` b ) ) e. dom ~~> ) ) |
257 | 158 256 | mpbid | |- ( ( ph /\ b e. D ) -> seq 1 ( + , ( S ` b ) ) e. dom ~~> ) |
258 | 257 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( S ` b ) ) e. dom ~~> ) |
259 | 240 241 244 253 258 | isumcl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) e. CC ) |
260 | 236 239 259 | adddid | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. ( 1 + sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) = ( ( C x. 1 ) + ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) ) |
261 | 8 | a1i | |- ( ph -> E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) |
262 | nnex | |- NN e. _V |
|
263 | 262 | mptex | |- ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) e. _V |
264 | 263 | a1i | |- ( ( ph /\ b e. CC ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) e. _V ) |
265 | 261 264 | fvmpt2d | |- ( ( ph /\ b e. CC ) -> ( E ` b ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
266 | 120 265 | sylan2 | |- ( ( ph /\ b e. D ) -> ( E ` b ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
267 | 266 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( E ` b ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
268 | ovexd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) e. _V ) |
|
269 | 267 268 | fmpt3d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( E ` b ) : NN --> _V ) |
270 | 269 | feqmptd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( E ` b ) = ( k e. NN |-> ( ( E ` b ) ` k ) ) ) |
271 | ovexd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) e. _V ) |
|
272 | 265 271 | fvmpt2d | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
273 | 242 133 | sylan2 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( C _Cc k ) ) |
274 | 273 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( k x. ( F ` k ) ) = ( k x. ( C _Cc k ) ) ) |
275 | 274 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( C _Cc k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
276 | 275 | adantlr | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( C _Cc k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
277 | 272 276 | eqtrd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( k x. ( C _Cc k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
278 | 4 | adantr | |- ( ( ph /\ k e. NN ) -> C e. CC ) |
279 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
280 | 279 | adantl | |- ( ( ph /\ k e. NN ) -> ( k - 1 ) e. NN0 ) |
281 | 278 280 | bccp1k | |- ( ( ph /\ k e. NN ) -> ( C _Cc ( ( k - 1 ) + 1 ) ) = ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / ( ( k - 1 ) + 1 ) ) ) ) |
282 | 242 | adantl | |- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
283 | 282 | nn0cnd | |- ( ( ph /\ k e. NN ) -> k e. CC ) |
284 | 1cnd | |- ( ( ph /\ k e. NN ) -> 1 e. CC ) |
|
285 | 283 284 | npcand | |- ( ( ph /\ k e. NN ) -> ( ( k - 1 ) + 1 ) = k ) |
286 | 285 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( C _Cc ( ( k - 1 ) + 1 ) ) = ( C _Cc k ) ) |
287 | 285 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( ( C - ( k - 1 ) ) / ( ( k - 1 ) + 1 ) ) = ( ( C - ( k - 1 ) ) / k ) ) |
288 | 287 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / ( ( k - 1 ) + 1 ) ) ) = ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / k ) ) ) |
289 | 281 286 288 | 3eqtr3d | |- ( ( ph /\ k e. NN ) -> ( C _Cc k ) = ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / k ) ) ) |
290 | 289 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( k x. ( C _Cc k ) ) = ( k x. ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / k ) ) ) ) |
291 | 278 280 | bcccl | |- ( ( ph /\ k e. NN ) -> ( C _Cc ( k - 1 ) ) e. CC ) |
292 | 283 284 | subcld | |- ( ( ph /\ k e. NN ) -> ( k - 1 ) e. CC ) |
293 | 278 292 | subcld | |- ( ( ph /\ k e. NN ) -> ( C - ( k - 1 ) ) e. CC ) |
294 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
295 | 294 | adantl | |- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
296 | 291 293 283 295 | divassd | |- ( ( ph /\ k e. NN ) -> ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) / k ) = ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / k ) ) ) |
297 | 296 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( k x. ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) / k ) ) = ( k x. ( ( C _Cc ( k - 1 ) ) x. ( ( C - ( k - 1 ) ) / k ) ) ) ) |
298 | 291 293 | mulcld | |- ( ( ph /\ k e. NN ) -> ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) e. CC ) |
299 | 298 283 295 | divcan2d | |- ( ( ph /\ k e. NN ) -> ( k x. ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) / k ) ) = ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) ) |
300 | 290 297 299 | 3eqtr2d | |- ( ( ph /\ k e. NN ) -> ( k x. ( C _Cc k ) ) = ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) ) |
301 | 300 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( k x. ( C _Cc k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
302 | 301 | adantlr | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( k x. ( C _Cc k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
303 | 291 | adantlr | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( C _Cc ( k - 1 ) ) e. CC ) |
304 | 293 | adantlr | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( C - ( k - 1 ) ) e. CC ) |
305 | 303 304 | mulcomd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) = ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) |
306 | 305 | oveq1d | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( ( C _Cc ( k - 1 ) ) x. ( C - ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
307 | 277 302 306 | 3eqtrd | |- ( ( ( ph /\ b e. CC ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
308 | 120 307 | sylanl2 | |- ( ( ( ph /\ b e. D ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
309 | 308 | adantllr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
310 | 309 | mpteq2dva | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( k e. NN |-> ( ( E ` b ) ` k ) ) = ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
311 | 270 310 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( E ` b ) = ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
312 | 311 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( E ` b ) shift -u 1 ) = ( ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) shift -u 1 ) ) |
313 | eqid | |- ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
|
314 | ovex | |- ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) e. _V |
|
315 | oveq1 | |- ( k = ( j - -u 1 ) -> ( k - 1 ) = ( ( j - -u 1 ) - 1 ) ) |
|
316 | 315 | oveq2d | |- ( k = ( j - -u 1 ) -> ( C - ( k - 1 ) ) = ( C - ( ( j - -u 1 ) - 1 ) ) ) |
317 | 315 | oveq2d | |- ( k = ( j - -u 1 ) -> ( C _Cc ( k - 1 ) ) = ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) |
318 | 316 317 | oveq12d | |- ( k = ( j - -u 1 ) -> ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) = ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) ) |
319 | 315 | oveq2d | |- ( k = ( j - -u 1 ) -> ( b ^ ( k - 1 ) ) = ( b ^ ( ( j - -u 1 ) - 1 ) ) ) |
320 | 318 319 | oveq12d | |- ( k = ( j - -u 1 ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( j - -u 1 ) - 1 ) ) ) ) |
321 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
322 | 321 | fveq2i | |- ( ZZ>= ` ( 1 + -u 1 ) ) = ( ZZ>= ` 0 ) |
323 | 113 322 | eqtr4i | |- NN0 = ( ZZ>= ` ( 1 + -u 1 ) ) |
324 | 241 | znegcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> -u 1 e. ZZ ) |
325 | 313 314 320 240 323 241 324 | uzmptshftfval | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) shift -u 1 ) = ( j e. NN0 |-> ( ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( j - -u 1 ) - 1 ) ) ) ) ) |
326 | oveq1 | |- ( j = k -> ( j - -u 1 ) = ( k - -u 1 ) ) |
|
327 | 326 | oveq1d | |- ( j = k -> ( ( j - -u 1 ) - 1 ) = ( ( k - -u 1 ) - 1 ) ) |
328 | 327 | oveq2d | |- ( j = k -> ( C - ( ( j - -u 1 ) - 1 ) ) = ( C - ( ( k - -u 1 ) - 1 ) ) ) |
329 | 327 | oveq2d | |- ( j = k -> ( C _Cc ( ( j - -u 1 ) - 1 ) ) = ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) |
330 | 328 329 | oveq12d | |- ( j = k -> ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) = ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) ) |
331 | 327 | oveq2d | |- ( j = k -> ( b ^ ( ( j - -u 1 ) - 1 ) ) = ( b ^ ( ( k - -u 1 ) - 1 ) ) ) |
332 | 330 331 | oveq12d | |- ( j = k -> ( ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( j - -u 1 ) - 1 ) ) ) = ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) ) |
333 | 332 | cbvmptv | |- ( j e. NN0 |-> ( ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( j - -u 1 ) - 1 ) ) ) ) = ( k e. NN0 |-> ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) ) |
334 | 333 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( j e. NN0 |-> ( ( ( C - ( ( j - -u 1 ) - 1 ) ) x. ( C _Cc ( ( j - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( j - -u 1 ) - 1 ) ) ) ) = ( k e. NN0 |-> ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) ) ) |
335 | 312 325 334 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( E ` b ) shift -u 1 ) = ( k e. NN0 |-> ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) ) ) |
336 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
337 | 1cnd | |- ( k e. NN0 -> 1 e. CC ) |
|
338 | 336 337 | subnegd | |- ( k e. NN0 -> ( k - -u 1 ) = ( k + 1 ) ) |
339 | 338 | oveq1d | |- ( k e. NN0 -> ( ( k - -u 1 ) - 1 ) = ( ( k + 1 ) - 1 ) ) |
340 | 336 337 | pncand | |- ( k e. NN0 -> ( ( k + 1 ) - 1 ) = k ) |
341 | 339 340 | eqtrd | |- ( k e. NN0 -> ( ( k - -u 1 ) - 1 ) = k ) |
342 | 341 | adantl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( k - -u 1 ) - 1 ) = k ) |
343 | 342 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C - ( ( k - -u 1 ) - 1 ) ) = ( C - k ) ) |
344 | 342 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C _Cc ( ( k - -u 1 ) - 1 ) ) = ( C _Cc k ) ) |
345 | 343 344 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) = ( ( C - k ) x. ( C _Cc k ) ) ) |
346 | 342 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( b ^ ( ( k - -u 1 ) - 1 ) ) = ( b ^ k ) ) |
347 | 345 346 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) = ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
348 | 347 | mpteq2dva | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( k e. NN0 |-> ( ( ( C - ( ( k - -u 1 ) - 1 ) ) x. ( C _Cc ( ( k - -u 1 ) - 1 ) ) ) x. ( b ^ ( ( k - -u 1 ) - 1 ) ) ) ) = ( k e. NN0 |-> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
349 | 335 348 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( E ` b ) shift -u 1 ) = ( k e. NN0 |-> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
350 | ovexd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) e. _V ) |
|
351 | 349 350 | fvmpt2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( E ` b ) shift -u 1 ) ` k ) = ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
352 | 242 351 | sylan2 | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( E ` b ) shift -u 1 ) ` k ) = ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
353 | 336 | adantl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> k e. CC ) |
354 | 245 353 | subcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C - k ) e. CC ) |
355 | 354 247 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( C - k ) x. ( C _Cc k ) ) e. CC ) |
356 | 355 251 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) e. CC ) |
357 | 242 356 | sylan2 | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) e. CC ) |
358 | fveq2 | |- ( k = j -> ( ( E ` b ) ` k ) = ( ( E ` b ) ` j ) ) |
|
359 | 358 | oveq2d | |- ( k = j -> ( b x. ( ( E ` b ) ` k ) ) = ( b x. ( ( E ` b ) ` j ) ) ) |
360 | 359 | cbvmptv | |- ( k e. NN |-> ( b x. ( ( E ` b ) ` k ) ) ) = ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) |
361 | 309 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( ( E ` b ) ` k ) ) = ( b x. ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
362 | 249 | adantr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> b e. CC ) |
363 | 4 | ad3antrrr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> C e. CC ) |
364 | nncn | |- ( k e. NN -> k e. CC ) |
|
365 | 364 | adantl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> k e. CC ) |
366 | 1cnd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> 1 e. CC ) |
|
367 | 365 366 | subcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( k - 1 ) e. CC ) |
368 | 363 367 | subcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( C - ( k - 1 ) ) e. CC ) |
369 | 279 | adantl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( k - 1 ) e. NN0 ) |
370 | 363 369 | bcccl | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( C _Cc ( k - 1 ) ) e. CC ) |
371 | 368 370 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) e. CC ) |
372 | 362 369 | expcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b ^ ( k - 1 ) ) e. CC ) |
373 | 362 371 372 | mul12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b x. ( b ^ ( k - 1 ) ) ) ) ) |
374 | 362 372 | mulcomd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( b ^ ( k - 1 ) ) ) = ( ( b ^ ( k - 1 ) ) x. b ) ) |
375 | 362 369 | expp1d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b ^ ( ( k - 1 ) + 1 ) ) = ( ( b ^ ( k - 1 ) ) x. b ) ) |
376 | 285 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( ( k - 1 ) + 1 ) = k ) |
377 | 376 | adantlr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( k - 1 ) + 1 ) = k ) |
378 | 377 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b ^ ( ( k - 1 ) + 1 ) ) = ( b ^ k ) ) |
379 | 374 375 378 | 3eqtr2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( b ^ ( k - 1 ) ) ) = ( b ^ k ) ) |
380 | 379 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b x. ( b ^ ( k - 1 ) ) ) ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
381 | 373 380 | eqtrd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
382 | 361 381 | eqtrd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( b x. ( ( E ` b ) ` k ) ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
383 | 382 | mpteq2dva | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( k e. NN |-> ( b x. ( ( E ` b ) ` k ) ) ) = ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
384 | 360 383 | eqtr3id | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) = ( k e. NN |-> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
385 | ovexd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) e. _V ) |
|
386 | 384 385 | fvmpt2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ` k ) = ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
387 | 371 252 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) e. CC ) |
388 | climrel | |- Rel ~~> |
|
389 | 157 | simprd | |- ( ( ph /\ b e. D ) -> seq 1 ( + , ( E ` b ) ) e. dom ~~> ) |
390 | 389 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( E ` b ) ) e. dom ~~> ) |
391 | climdm | |- ( seq 1 ( + , ( E ` b ) ) e. dom ~~> <-> seq 1 ( + , ( E ` b ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
|
392 | 390 391 | sylib | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( E ` b ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
393 | 0z | |- 0 e. ZZ |
|
394 | neg1z | |- -u 1 e. ZZ |
|
395 | fvex | |- ( E ` b ) e. _V |
|
396 | 395 | seqshft | |- ( ( 0 e. ZZ /\ -u 1 e. ZZ ) -> seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) = ( seq ( 0 - -u 1 ) ( + , ( E ` b ) ) shift -u 1 ) ) |
397 | 393 394 396 | mp2an | |- seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) = ( seq ( 0 - -u 1 ) ( + , ( E ` b ) ) shift -u 1 ) |
398 | 0cn | |- 0 e. CC |
|
399 | 398 196 | subnegi | |- ( 0 - -u 1 ) = ( 0 + 1 ) |
400 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
401 | 399 400 | eqtri | |- ( 0 - -u 1 ) = 1 |
402 | seqeq1 | |- ( ( 0 - -u 1 ) = 1 -> seq ( 0 - -u 1 ) ( + , ( E ` b ) ) = seq 1 ( + , ( E ` b ) ) ) |
|
403 | 401 402 | ax-mp | |- seq ( 0 - -u 1 ) ( + , ( E ` b ) ) = seq 1 ( + , ( E ` b ) ) |
404 | 403 | oveq1i | |- ( seq ( 0 - -u 1 ) ( + , ( E ` b ) ) shift -u 1 ) = ( seq 1 ( + , ( E ` b ) ) shift -u 1 ) |
405 | 397 404 | eqtri | |- seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) = ( seq 1 ( + , ( E ` b ) ) shift -u 1 ) |
406 | 405 | breq1i | |- ( seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) <-> ( seq 1 ( + , ( E ` b ) ) shift -u 1 ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
407 | seqex | |- seq 1 ( + , ( E ` b ) ) e. _V |
|
408 | climshft | |- ( ( -u 1 e. ZZ /\ seq 1 ( + , ( E ` b ) ) e. _V ) -> ( ( seq 1 ( + , ( E ` b ) ) shift -u 1 ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) <-> seq 1 ( + , ( E ` b ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) ) |
|
409 | 394 407 408 | mp2an | |- ( ( seq 1 ( + , ( E ` b ) ) shift -u 1 ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) <-> seq 1 ( + , ( E ` b ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
410 | 406 409 | bitri | |- ( seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) <-> seq 1 ( + , ( E ` b ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
411 | 392 410 | sylibr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) |
412 | releldm | |- ( ( Rel ~~> /\ seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) ~~> ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) -> seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) e. dom ~~> ) |
|
413 | 388 411 412 | sylancr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) e. dom ~~> ) |
414 | 254 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> 1 e. NN0 ) |
415 | 351 356 | eqeltrd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( E ` b ) shift -u 1 ) ` k ) e. CC ) |
416 | 113 414 415 | iserex | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( seq 0 ( + , ( ( E ` b ) shift -u 1 ) ) e. dom ~~> <-> seq 1 ( + , ( ( E ` b ) shift -u 1 ) ) e. dom ~~> ) ) |
417 | 413 416 | mpbid | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( ( E ` b ) shift -u 1 ) ) e. dom ~~> ) |
418 | 371 372 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) e. CC ) |
419 | 309 418 | eqeltrd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( E ` b ) ` k ) e. CC ) |
420 | 386 382 | eqtr4d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ` k ) = ( b x. ( ( E ` b ) ` k ) ) ) |
421 | 240 241 249 392 419 420 | isermulc2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ) ~~> ( b x. ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) ) |
422 | releldm | |- ( ( Rel ~~> /\ seq 1 ( + , ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ) ~~> ( b x. ( ~~> ` seq 1 ( + , ( E ` b ) ) ) ) ) -> seq 1 ( + , ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ) e. dom ~~> ) |
|
423 | 388 421 422 | sylancr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> seq 1 ( + , ( j e. NN |-> ( b x. ( ( E ` b ) ` j ) ) ) ) e. dom ~~> ) |
424 | 240 241 352 357 386 387 417 423 | isumadd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) = ( sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
425 | 424 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) = ( C + ( sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) ) |
426 | 363 365 | subcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( C - k ) e. CC ) |
427 | 426 248 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( C - k ) x. ( C _Cc k ) ) e. CC ) |
428 | 427 371 252 | adddird | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) = ( ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
429 | 428 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) = sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
430 | 429 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) ) = ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) ) |
431 | 307 | sumeq2dv | |- ( ( ph /\ b e. CC ) -> sum_ k e. NN ( ( E ` b ) ` k ) = sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
432 | 431 | oveq2d | |- ( ( ph /\ b e. CC ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( ( 1 + b ) x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
433 | 120 432 | sylan2 | |- ( ( ph /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( ( 1 + b ) x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
434 | 433 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( ( 1 + b ) x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
435 | 240 241 309 418 390 | isumcl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) e. CC ) |
436 | 239 249 435 | adddird | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( ( 1 x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) + ( b x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) |
437 | 435 | mulid2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) |
438 | 240 241 309 418 390 249 | isummulc2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( b x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = sum_ k e. NN ( b x. ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
439 | 381 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( b x. ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
440 | 438 439 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( b x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) = sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) |
441 | 437 440 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) + ( b x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) ) = ( sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
442 | 434 436 441 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
443 | 400 | fveq2i | |- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
444 | 240 443 | eqtr4i | |- NN = ( ZZ>= ` ( 0 + 1 ) ) |
445 | oveq1 | |- ( k = ( 1 + j ) -> ( k - 1 ) = ( ( 1 + j ) - 1 ) ) |
|
446 | 445 | oveq2d | |- ( k = ( 1 + j ) -> ( C - ( k - 1 ) ) = ( C - ( ( 1 + j ) - 1 ) ) ) |
447 | 445 | oveq2d | |- ( k = ( 1 + j ) -> ( C _Cc ( k - 1 ) ) = ( C _Cc ( ( 1 + j ) - 1 ) ) ) |
448 | 446 447 | oveq12d | |- ( k = ( 1 + j ) -> ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) = ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) ) |
449 | 445 | oveq2d | |- ( k = ( 1 + j ) -> ( b ^ ( k - 1 ) ) = ( b ^ ( ( 1 + j ) - 1 ) ) ) |
450 | 448 449 | oveq12d | |- ( k = ( 1 + j ) -> ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) x. ( b ^ ( ( 1 + j ) - 1 ) ) ) ) |
451 | 113 444 450 241 114 418 | isumshft | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = sum_ j e. NN0 ( ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) x. ( b ^ ( ( 1 + j ) - 1 ) ) ) ) |
452 | oveq2 | |- ( j = k -> ( 1 + j ) = ( 1 + k ) ) |
|
453 | 452 | oveq1d | |- ( j = k -> ( ( 1 + j ) - 1 ) = ( ( 1 + k ) - 1 ) ) |
454 | 453 | oveq2d | |- ( j = k -> ( C - ( ( 1 + j ) - 1 ) ) = ( C - ( ( 1 + k ) - 1 ) ) ) |
455 | 453 | oveq2d | |- ( j = k -> ( C _Cc ( ( 1 + j ) - 1 ) ) = ( C _Cc ( ( 1 + k ) - 1 ) ) ) |
456 | 454 455 | oveq12d | |- ( j = k -> ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) = ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) ) |
457 | 453 | oveq2d | |- ( j = k -> ( b ^ ( ( 1 + j ) - 1 ) ) = ( b ^ ( ( 1 + k ) - 1 ) ) ) |
458 | 456 457 | oveq12d | |- ( j = k -> ( ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) x. ( b ^ ( ( 1 + j ) - 1 ) ) ) = ( ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) x. ( b ^ ( ( 1 + k ) - 1 ) ) ) ) |
459 | 458 | cbvsumv | |- sum_ j e. NN0 ( ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) x. ( b ^ ( ( 1 + j ) - 1 ) ) ) = sum_ k e. NN0 ( ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) x. ( b ^ ( ( 1 + k ) - 1 ) ) ) |
460 | 459 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ j e. NN0 ( ( ( C - ( ( 1 + j ) - 1 ) ) x. ( C _Cc ( ( 1 + j ) - 1 ) ) ) x. ( b ^ ( ( 1 + j ) - 1 ) ) ) = sum_ k e. NN0 ( ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) x. ( b ^ ( ( 1 + k ) - 1 ) ) ) ) |
461 | 1cnd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> 1 e. CC ) |
|
462 | 461 353 | pncan2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( 1 + k ) - 1 ) = k ) |
463 | 462 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C - ( ( 1 + k ) - 1 ) ) = ( C - k ) ) |
464 | 462 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( C _Cc ( ( 1 + k ) - 1 ) ) = ( C _Cc k ) ) |
465 | 463 464 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) = ( ( C - k ) x. ( C _Cc k ) ) ) |
466 | 462 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( b ^ ( ( 1 + k ) - 1 ) ) = ( b ^ k ) ) |
467 | 465 466 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) x. ( b ^ ( ( 1 + k ) - 1 ) ) ) = ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
468 | 467 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( ( C - ( ( 1 + k ) - 1 ) ) x. ( C _Cc ( ( 1 + k ) - 1 ) ) ) x. ( b ^ ( ( 1 + k ) - 1 ) ) ) = sum_ k e. NN0 ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
469 | 451 460 468 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = sum_ k e. NN0 ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
470 | 113 114 351 356 413 | isum1p | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) = ( ( ( ( E ` b ) shift -u 1 ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
471 | simpr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> k = 0 ) |
|
472 | 471 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( C - k ) = ( C - 0 ) ) |
473 | 471 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( C _Cc k ) = ( C _Cc 0 ) ) |
474 | 472 473 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( ( C - k ) x. ( C _Cc k ) ) = ( ( C - 0 ) x. ( C _Cc 0 ) ) ) |
475 | 471 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( b ^ k ) = ( b ^ 0 ) ) |
476 | 474 475 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) = ( ( ( C - 0 ) x. ( C _Cc 0 ) ) x. ( b ^ 0 ) ) ) |
477 | 0nn0 | |- 0 e. NN0 |
|
478 | 477 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> 0 e. NN0 ) |
479 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C - 0 ) x. ( C _Cc 0 ) ) x. ( b ^ 0 ) ) e. _V ) |
|
480 | 349 476 478 479 | fvmptd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( E ` b ) shift -u 1 ) ` 0 ) = ( ( ( C - 0 ) x. ( C _Cc 0 ) ) x. ( b ^ 0 ) ) ) |
481 | 236 | subid1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C - 0 ) = C ) |
482 | 236 | bccn0 | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C _Cc 0 ) = 1 ) |
483 | 481 482 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C - 0 ) x. ( C _Cc 0 ) ) = ( C x. 1 ) ) |
484 | 483 237 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C - 0 ) x. ( C _Cc 0 ) ) = C ) |
485 | 249 | exp0d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( b ^ 0 ) = 1 ) |
486 | 484 485 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C - 0 ) x. ( C _Cc 0 ) ) x. ( b ^ 0 ) ) = ( C x. 1 ) ) |
487 | 480 486 237 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( E ` b ) shift -u 1 ) ` 0 ) = C ) |
488 | 444 | eqcomi | |- ( ZZ>= ` ( 0 + 1 ) ) = NN |
489 | 488 | sumeq1i | |- sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) = sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) |
490 | 489 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) = sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
491 | 487 490 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( ( E ` b ) shift -u 1 ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) = ( C + sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
492 | 469 470 491 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) = ( C + sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
493 | 492 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) = ( ( C + sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) |
494 | 240 241 352 357 417 | isumcl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) e. CC ) |
495 | 249 435 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( b x. sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ ( k - 1 ) ) ) ) e. CC ) |
496 | 440 495 | eqeltrrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) e. CC ) |
497 | 236 494 496 | addassd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C + sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) = ( C + ( sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) ) |
498 | 442 493 497 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C + ( sum_ k e. NN ( ( ( C - k ) x. ( C _Cc k ) ) x. ( b ^ k ) ) + sum_ k e. NN ( ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) x. ( b ^ k ) ) ) ) ) |
499 | 425 430 498 | 3eqtr4rd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) ) ) |
500 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
501 | 278 500 | binomcxplemwb | |- ( ( ph /\ k e. NN ) -> ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) = ( C x. ( C _Cc k ) ) ) |
502 | 501 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) = ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
503 | 502 | sumeq2dv | |- ( ph -> sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) = sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) ) |
504 | 503 | oveq2d | |- ( ph -> ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) ) = ( C + sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
505 | 504 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C + sum_ k e. NN ( ( ( ( C - k ) x. ( C _Cc k ) ) + ( ( C - ( k - 1 ) ) x. ( C _Cc ( k - 1 ) ) ) ) x. ( b ^ k ) ) ) = ( C + sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) ) ) |
506 | 363 248 252 | mulassd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) = ( C x. ( ( C _Cc k ) x. ( b ^ k ) ) ) ) |
507 | 506 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) = sum_ k e. NN ( C x. ( ( C _Cc k ) x. ( b ^ k ) ) ) ) |
508 | 240 241 244 253 258 236 | isummulc2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) = sum_ k e. NN ( C x. ( ( C _Cc k ) x. ( b ^ k ) ) ) ) |
509 | 507 508 | eqtr4d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) = ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) |
510 | 509 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C + sum_ k e. NN ( ( C x. ( C _Cc k ) ) x. ( b ^ k ) ) ) = ( C + ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) ) |
511 | 499 505 510 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C + ( C x. sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) ) |
512 | 238 260 511 | 3eqtr4rd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C x. ( 1 + sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) ) |
513 | 6 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ) |
514 | 123 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. CC ) -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) e. _V ) |
515 | 513 514 | fvmpt2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. CC ) -> ( S ` b ) = ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
516 | 120 515 | sylan2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( S ` b ) = ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
517 | ovexd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) e. _V ) |
|
518 | 516 517 | fvmpt2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( F ` k ) x. ( b ^ k ) ) ) |
519 | 518 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ k e. NN0 ( ( F ` k ) x. ( b ^ k ) ) ) |
520 | 4 | adantr | |- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
521 | 520 131 | bcccl | |- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
522 | 133 521 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
523 | 522 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
524 | 523 | adantlr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
525 | 524 251 | mulcld | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) e. CC ) |
526 | 113 114 518 525 159 | isum1p | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( F ` k ) x. ( b ^ k ) ) = ( ( ( S ` b ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( F ` k ) x. ( b ^ k ) ) ) ) |
527 | 471 | fveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( F ` k ) = ( F ` 0 ) ) |
528 | 527 475 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k = 0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( F ` 0 ) x. ( b ^ 0 ) ) ) |
529 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( F ` 0 ) x. ( b ^ 0 ) ) e. _V ) |
|
530 | 516 528 478 529 | fvmptd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( S ` b ) ` 0 ) = ( ( F ` 0 ) x. ( b ^ 0 ) ) ) |
531 | 5 | a1i | |- ( ph -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
532 | simpr | |- ( ( ph /\ j = 0 ) -> j = 0 ) |
|
533 | 532 | oveq2d | |- ( ( ph /\ j = 0 ) -> ( C _Cc j ) = ( C _Cc 0 ) ) |
534 | 477 | a1i | |- ( ph -> 0 e. NN0 ) |
535 | ovexd | |- ( ph -> ( C _Cc 0 ) e. _V ) |
|
536 | 531 533 534 535 | fvmptd | |- ( ph -> ( F ` 0 ) = ( C _Cc 0 ) ) |
537 | 536 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( F ` 0 ) = ( C _Cc 0 ) ) |
538 | 537 482 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( F ` 0 ) = 1 ) |
539 | 538 485 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( F ` 0 ) x. ( b ^ 0 ) ) = ( 1 x. 1 ) ) |
540 | 239 | mulid1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 x. 1 ) = 1 ) |
541 | 530 539 540 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( S ` b ) ` 0 ) = 1 ) |
542 | 488 | sumeq1i | |- sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( F ` k ) x. ( b ^ k ) ) = sum_ k e. NN ( ( F ` k ) x. ( b ^ k ) ) |
543 | 134 | adantlr | |- ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
544 | 242 543 | sylan2 | |- ( ( ( ph /\ b e. D ) /\ k e. NN ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
545 | 544 | adantllr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( b ^ k ) ) ) |
546 | 545 | sumeq2dv | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( F ` k ) x. ( b ^ k ) ) = sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) |
547 | 542 546 | syl5eq | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( F ` k ) x. ( b ^ k ) ) = sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) |
548 | 541 547 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( S ` b ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( F ` k ) x. ( b ^ k ) ) ) = ( 1 + sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) |
549 | 519 526 548 | 3eqtrrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 + sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) = sum_ k e. NN0 ( ( S ` b ) ` k ) ) |
550 | 549 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. ( 1 + sum_ k e. NN ( ( C _Cc k ) x. ( b ^ k ) ) ) ) = ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
551 | 512 550 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
552 | 236 160 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) e. CC ) |
553 | 239 249 | addcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 + b ) e. CC ) |
554 | eqidd | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) /\ k e. NN ) -> ( ( E ` b ) ` k ) = ( ( E ` b ) ` k ) ) |
|
555 | 240 241 554 419 390 | isumcl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( E ` b ) ` k ) e. CC ) |
556 | 239 249 | subnegd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 - -u b ) = ( 1 + b ) ) |
557 | 249 | negcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> -u b e. CC ) |
558 | elpreima | |- ( abs Fn CC -> ( b e. ( `' abs " ( 0 [,) R ) ) <-> ( b e. CC /\ ( abs ` b ) e. ( 0 [,) R ) ) ) ) |
|
559 | 87 88 558 | mp2b | |- ( b e. ( `' abs " ( 0 [,) R ) ) <-> ( b e. CC /\ ( abs ` b ) e. ( 0 [,) R ) ) ) |
560 | 559 | simprbi | |- ( b e. ( `' abs " ( 0 [,) R ) ) -> ( abs ` b ) e. ( 0 [,) R ) ) |
561 | 560 9 | eleq2s | |- ( b e. D -> ( abs ` b ) e. ( 0 [,) R ) ) |
562 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` b ) e. ( 0 [,) R ) <-> ( ( abs ` b ) e. RR /\ 0 <_ ( abs ` b ) /\ ( abs ` b ) < R ) ) ) |
|
563 | 76 82 562 | mp2an | |- ( ( abs ` b ) e. ( 0 [,) R ) <-> ( ( abs ` b ) e. RR /\ 0 <_ ( abs ` b ) /\ ( abs ` b ) < R ) ) |
564 | 563 | simp3bi | |- ( ( abs ` b ) e. ( 0 [,) R ) -> ( abs ` b ) < R ) |
565 | 561 564 | syl | |- ( b e. D -> ( abs ` b ) < R ) |
566 | 565 | adantl | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( abs ` b ) < R ) |
567 | 249 | absnegd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( abs ` -u b ) = ( abs ` b ) ) |
568 | 567 | eqcomd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( abs ` b ) = ( abs ` -u b ) ) |
569 | 74 | adantr | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> R = 1 ) |
570 | 566 568 569 | 3brtr3d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( abs ` -u b ) < 1 ) |
571 | 1re | |- 1 e. RR |
|
572 | abssubne0 | |- ( ( -u b e. CC /\ 1 e. RR /\ ( abs ` -u b ) < 1 ) -> ( 1 - -u b ) =/= 0 ) |
|
573 | 571 572 | mp3an2 | |- ( ( -u b e. CC /\ ( abs ` -u b ) < 1 ) -> ( 1 - -u b ) =/= 0 ) |
574 | 557 570 573 | syl2anc | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 - -u b ) =/= 0 ) |
575 | 556 574 | eqnetrrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 + b ) =/= 0 ) |
576 | 552 553 555 575 | divmuld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) / ( 1 + b ) ) = sum_ k e. NN ( ( E ` b ) ` k ) <-> ( ( 1 + b ) x. sum_ k e. NN ( ( E ` b ) ` k ) ) = ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) |
577 | 551 576 | mpbird | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) / ( 1 + b ) ) = sum_ k e. NN ( ( E ` b ) ` k ) ) |
578 | 236 160 553 575 | div23d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) / ( 1 + b ) ) = ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
579 | 577 578 | eqtr3d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN ( ( E ` b ) ` k ) = ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
580 | 579 | mpteq2dva | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) = ( b e. D |-> ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) |
581 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C / ( 1 + b ) ) e. _V ) |
|
582 | sumex | |- sum_ k e. NN0 ( ( S ` b ) ` k ) e. _V |
|
583 | 582 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> sum_ k e. NN0 ( ( S ` b ) ` k ) e. _V ) |
584 | eqidd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( C / ( 1 + b ) ) ) = ( b e. D |-> ( C / ( 1 + b ) ) ) ) |
|
585 | 10 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> P = ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
586 | 104 29 183 581 583 584 585 | offval2f | |- ( ( ph /\ -. C e. NN0 ) -> ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) = ( b e. D |-> ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) |
587 | 580 205 586 | 3eqtr4d | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D P ) = ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) ) |
588 | 587 | oveq1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( CC _D P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) |
589 | 223 | oveq1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF x. P ) = ( ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) oF x. P ) ) |
590 | 588 589 | oveq12d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( CC _D P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF + ( ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF x. P ) ) = ( ( ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF + ( ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) oF x. P ) ) ) |
591 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) e. _V ) |
|
592 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) e. _V ) |
|
593 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) e. _V ) |
|
594 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c -u C ) e. _V ) |
|
595 | eqidd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) = ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) |
|
596 | 104 29 183 593 594 586 595 | offval2f | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) ) ) |
597 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) e. _V ) |
|
598 | eqidd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) ) |
|
599 | 104 29 183 597 583 598 585 | offval2f | |- ( ( ph /\ -. C e. NN0 ) -> ( ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) oF x. P ) = ( b e. D |-> ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) |
600 | 104 29 183 591 592 596 599 | offval2f | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( ( b e. D |-> ( C / ( 1 + b ) ) ) oF x. P ) oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF + ( ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) oF x. P ) ) = ( b e. D |-> ( ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) + ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) ) |
601 | 235 590 600 | 3eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = ( b e. D |-> ( ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) + ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) ) |
602 | 236 553 575 | divcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C / ( 1 + b ) ) e. CC ) |
603 | 236 | negcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> -u C e. CC ) |
604 | 553 603 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c -u C ) e. CC ) |
605 | 602 160 604 | mul32d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) = ( ( ( C / ( 1 + b ) ) x. ( ( 1 + b ) ^c -u C ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
606 | 236 553 604 575 | div32d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C / ( 1 + b ) ) x. ( ( 1 + b ) ^c -u C ) ) = ( C x. ( ( ( 1 + b ) ^c -u C ) / ( 1 + b ) ) ) ) |
607 | 553 575 603 239 | cxpsubd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c ( -u C - 1 ) ) = ( ( ( 1 + b ) ^c -u C ) / ( ( 1 + b ) ^c 1 ) ) ) |
608 | 553 | cxp1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c 1 ) = ( 1 + b ) ) |
609 | 608 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( 1 + b ) ^c -u C ) / ( ( 1 + b ) ^c 1 ) ) = ( ( ( 1 + b ) ^c -u C ) / ( 1 + b ) ) ) |
610 | 607 609 | eqtr2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( 1 + b ) ^c -u C ) / ( 1 + b ) ) = ( ( 1 + b ) ^c ( -u C - 1 ) ) ) |
611 | 610 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. ( ( ( 1 + b ) ^c -u C ) / ( 1 + b ) ) ) = ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) |
612 | 606 611 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C / ( 1 + b ) ) x. ( ( 1 + b ) ^c -u C ) ) = ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) |
613 | 612 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C / ( 1 + b ) ) x. ( ( 1 + b ) ^c -u C ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) = ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
614 | 605 613 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) = ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
615 | 603 239 | subcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( -u C - 1 ) e. CC ) |
616 | 553 615 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c ( -u C - 1 ) ) e. CC ) |
617 | 236 616 | mulneg1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) = -u ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) |
618 | 617 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) = ( -u ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
619 | 236 616 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) e. CC ) |
620 | 619 160 | mulneg1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( -u ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) = -u ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
621 | 618 620 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) = -u ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) |
622 | 614 621 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) + ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) = ( ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) + -u ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) |
623 | 619 160 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) e. CC ) |
624 | 623 | negidd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) + -u ( ( C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) = 0 ) |
625 | 622 624 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) + ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) = 0 ) |
626 | 625 | mpteq2dva | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( ( ( ( C / ( 1 + b ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) x. ( ( 1 + b ) ^c -u C ) ) + ( ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) x. sum_ k e. NN0 ( ( S ` b ) ` k ) ) ) ) = ( b e. D |-> 0 ) ) |
627 | 601 626 | eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = ( b e. D |-> 0 ) ) |
628 | nfcv | |- F/_ x 0 |
|
629 | eqidd | |- ( x = b -> 0 = 0 ) |
|
630 | 30 29 12 628 629 | cbvmptf | |- ( x e. D |-> 0 ) = ( b e. D |-> 0 ) |
631 | 627 630 | eqtr4di | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = ( x e. D |-> 0 ) ) |
632 | c0ex | |- 0 e. _V |
|
633 | 632 | snid | |- 0 e. { 0 } |
634 | 633 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> 0 e. { 0 } ) |
635 | 631 634 | fmpt3d | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) : D --> { 0 } ) |
636 | 635 | fdmd | |- ( ( ph /\ -. C e. NN0 ) -> dom ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = D ) |
637 | 1cnd | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> 1 e. CC ) |
|
638 | 0cnd | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> 0 e. CC ) |
|
639 | dvconst | |- ( 1 e. CC -> ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) ) |
|
640 | 196 639 | ax-mp | |- ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) |
641 | fconstmpt | |- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
|
642 | 641 | oveq2i | |- ( CC _D ( CC X. { 1 } ) ) = ( CC _D ( x e. CC |-> 1 ) ) |
643 | fconstmpt | |- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
|
644 | 640 642 643 | 3eqtr3i | |- ( CC _D ( x e. CC |-> 1 ) ) = ( x e. CC |-> 0 ) |
645 | 644 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. CC |-> 1 ) ) = ( x e. CC |-> 0 ) ) |
646 | 119 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> D C_ CC ) |
647 | fvex | |- ( TopOpen ` CCfld ) e. _V |
|
648 | cnfldtps | |- CCfld e. TopSp |
|
649 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
650 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
651 | 649 650 | tpsuni | |- ( CCfld e. TopSp -> CC = U. ( TopOpen ` CCfld ) ) |
652 | 648 651 | ax-mp | |- CC = U. ( TopOpen ` CCfld ) |
653 | 652 | restid | |- ( ( TopOpen ` CCfld ) e. _V -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
654 | 647 653 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
655 | 654 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
656 | 650 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
657 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
658 | 650 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
659 | 658 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
660 | 657 398 82 659 | mp3an | |- ( 0 ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) |
661 | 99 660 | eqeltri | |- D e. ( TopOpen ` CCfld ) |
662 | isopn3i | |- ( ( ( TopOpen ` CCfld ) e. Top /\ D e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D ) |
|
663 | 656 661 662 | mp2an | |- ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D |
664 | 663 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D ) |
665 | 203 637 638 645 646 655 650 664 | dvmptres2 | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. D |-> 1 ) ) = ( x e. D |-> 0 ) ) |
666 | 192 | oveq2i | |- ( CC _D ( x e. D |-> 1 ) ) = ( CC _D ( b e. D |-> 1 ) ) |
667 | 665 666 630 | 3eqtr3g | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( b e. D |-> 1 ) ) = ( b e. D |-> 0 ) ) |
668 | 626 601 667 | 3eqtr4d | |- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) = ( CC _D ( b e. D |-> 1 ) ) ) |
669 | 1rp | |- 1 e. RR+ |
|
670 | 74 669 | eqeltrdi | |- ( ( ph /\ -. C e. NN0 ) -> R e. RR+ ) |
671 | blcntr | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) R ) ) |
|
672 | 657 398 671 | mp3an12 | |- ( R e. RR+ -> 0 e. ( 0 ( ball ` ( abs o. - ) ) R ) ) |
673 | 670 672 | syl | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) R ) ) |
674 | 673 99 | eleqtrrdi | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. D ) |
675 | 0zd | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. ZZ ) |
|
676 | eqidd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) = ( ( S ` 0 ) ` k ) ) |
|
677 | nfv | |- F/ b ph |
|
678 | 29 | nfel2 | |- F/ b 0 e. D |
679 | 677 678 | nfan | |- F/ b ( ph /\ 0 e. D ) |
680 | nfv | |- F/ b k e. NN0 |
|
681 | 679 680 | nfan | |- F/ b ( ( ph /\ 0 e. D ) /\ k e. NN0 ) |
682 | 16 12 | nffv | |- F/_ b ( S ` 0 ) |
683 | 682 35 | nffv | |- F/_ b ( ( S ` 0 ) ` k ) |
684 | 683 | nfel1 | |- F/ b ( ( S ` 0 ) ` k ) e. CC |
685 | 681 684 | nfim | |- F/ b ( ( ( ph /\ 0 e. D ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) e. CC ) |
686 | eleq1 | |- ( b = 0 -> ( b e. D <-> 0 e. D ) ) |
|
687 | 686 | anbi2d | |- ( b = 0 -> ( ( ph /\ b e. D ) <-> ( ph /\ 0 e. D ) ) ) |
688 | 687 | anbi1d | |- ( b = 0 -> ( ( ( ph /\ b e. D ) /\ k e. NN0 ) <-> ( ( ph /\ 0 e. D ) /\ k e. NN0 ) ) ) |
689 | fveq2 | |- ( b = 0 -> ( S ` b ) = ( S ` 0 ) ) |
|
690 | 689 | fveq1d | |- ( b = 0 -> ( ( S ` b ) ` k ) = ( ( S ` 0 ) ` k ) ) |
691 | 690 | eleq1d | |- ( b = 0 -> ( ( ( S ` b ) ` k ) e. CC <-> ( ( S ` 0 ) ` k ) e. CC ) ) |
692 | 688 691 | imbi12d | |- ( b = 0 -> ( ( ( ( ph /\ b e. D ) /\ k e. NN0 ) -> ( ( S ` b ) ` k ) e. CC ) <-> ( ( ( ph /\ 0 e. D ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) e. CC ) ) ) |
693 | 685 632 692 144 | vtoclf | |- ( ( ( ph /\ 0 e. D ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) e. CC ) |
694 | 674 693 | syldanl | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) e. CC ) |
695 | 12 14 682 | nfseq | |- F/_ b seq 0 ( + , ( S ` 0 ) ) |
696 | 695 | nfel1 | |- F/ b seq 0 ( + , ( S ` 0 ) ) e. dom ~~> |
697 | 679 696 | nfim | |- F/ b ( ( ph /\ 0 e. D ) -> seq 0 ( + , ( S ` 0 ) ) e. dom ~~> ) |
698 | 689 | seqeq3d | |- ( b = 0 -> seq 0 ( + , ( S ` b ) ) = seq 0 ( + , ( S ` 0 ) ) ) |
699 | 698 | eleq1d | |- ( b = 0 -> ( seq 0 ( + , ( S ` b ) ) e. dom ~~> <-> seq 0 ( + , ( S ` 0 ) ) e. dom ~~> ) ) |
700 | 687 699 | imbi12d | |- ( b = 0 -> ( ( ( ph /\ b e. D ) -> seq 0 ( + , ( S ` b ) ) e. dom ~~> ) <-> ( ( ph /\ 0 e. D ) -> seq 0 ( + , ( S ` 0 ) ) e. dom ~~> ) ) ) |
701 | 697 632 700 158 | vtoclf | |- ( ( ph /\ 0 e. D ) -> seq 0 ( + , ( S ` 0 ) ) e. dom ~~> ) |
702 | 674 701 | syldan | |- ( ( ph /\ -. C e. NN0 ) -> seq 0 ( + , ( S ` 0 ) ) e. dom ~~> ) |
703 | 113 675 676 694 702 | isum1p | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN0 ( ( S ` 0 ) ` k ) = ( ( ( S ` 0 ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( S ` 0 ) ` k ) ) ) |
704 | 133 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
705 | 704 | adantlr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = 0 ) /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
706 | simplr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = 0 ) /\ k e. NN0 ) -> b = 0 ) |
|
707 | 706 | oveq1d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = 0 ) /\ k e. NN0 ) -> ( b ^ k ) = ( 0 ^ k ) ) |
708 | 705 707 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = 0 ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( 0 ^ k ) ) ) |
709 | 708 | mpteq2dva | |- ( ( ( ph /\ -. C e. NN0 ) /\ b = 0 ) -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) = ( k e. NN0 |-> ( ( C _Cc k ) x. ( 0 ^ k ) ) ) ) |
710 | 122 | mptex | |- ( k e. NN0 |-> ( ( C _Cc k ) x. ( 0 ^ k ) ) ) e. _V |
711 | 710 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( ( C _Cc k ) x. ( 0 ^ k ) ) ) e. _V ) |
712 | 513 709 100 711 | fvmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( S ` 0 ) = ( k e. NN0 |-> ( ( C _Cc k ) x. ( 0 ^ k ) ) ) ) |
713 | simpr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k = 0 ) -> k = 0 ) |
|
714 | 713 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k = 0 ) -> ( C _Cc k ) = ( C _Cc 0 ) ) |
715 | 713 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k = 0 ) -> ( 0 ^ k ) = ( 0 ^ 0 ) ) |
716 | 714 715 | oveq12d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k = 0 ) -> ( ( C _Cc k ) x. ( 0 ^ k ) ) = ( ( C _Cc 0 ) x. ( 0 ^ 0 ) ) ) |
717 | 477 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> 0 e. NN0 ) |
718 | ovexd | |- ( ( ph /\ -. C e. NN0 ) -> ( ( C _Cc 0 ) x. ( 0 ^ 0 ) ) e. _V ) |
|
719 | 712 716 717 718 | fvmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( ( S ` 0 ) ` 0 ) = ( ( C _Cc 0 ) x. ( 0 ^ 0 ) ) ) |
720 | 4 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> C e. CC ) |
721 | 720 | bccn0 | |- ( ( ph /\ -. C e. NN0 ) -> ( C _Cc 0 ) = 1 ) |
722 | 100 | exp0d | |- ( ( ph /\ -. C e. NN0 ) -> ( 0 ^ 0 ) = 1 ) |
723 | 721 722 | oveq12d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( C _Cc 0 ) x. ( 0 ^ 0 ) ) = ( 1 x. 1 ) ) |
724 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
725 | 724 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( 1 x. 1 ) = 1 ) |
726 | 719 723 725 | 3eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> ( ( S ` 0 ) ` 0 ) = 1 ) |
727 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( 0 ^ k ) ) e. _V ) |
|
728 | 712 727 | fvmpt2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( S ` 0 ) ` k ) = ( ( C _Cc k ) x. ( 0 ^ k ) ) ) |
729 | 242 728 | sylan2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( ( S ` 0 ) ` k ) = ( ( C _Cc k ) x. ( 0 ^ k ) ) ) |
730 | simpr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> k e. NN ) |
|
731 | 730 | 0expd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( 0 ^ k ) = 0 ) |
732 | 731 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( ( C _Cc k ) x. ( 0 ^ k ) ) = ( ( C _Cc k ) x. 0 ) ) |
733 | 521 | adantlr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
734 | 242 733 | sylan2 | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( C _Cc k ) e. CC ) |
735 | 734 | mul01d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( ( C _Cc k ) x. 0 ) = 0 ) |
736 | 729 732 735 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN ) -> ( ( S ` 0 ) ` k ) = 0 ) |
737 | 736 | sumeq2dv | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN ( ( S ` 0 ) ` k ) = sum_ k e. NN 0 ) |
738 | 444 | sumeq1i | |- sum_ k e. NN ( ( S ` 0 ) ` k ) = sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( S ` 0 ) ` k ) |
739 | 240 | eqimssi | |- NN C_ ( ZZ>= ` 1 ) |
740 | 739 | orci | |- ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) |
741 | sumz | |- ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ k e. NN 0 = 0 ) |
|
742 | 740 741 | ax-mp | |- sum_ k e. NN 0 = 0 |
743 | 737 738 742 | 3eqtr3g | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( S ` 0 ) ` k ) = 0 ) |
744 | 726 743 | oveq12d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( S ` 0 ) ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) ( ( S ` 0 ) ` k ) ) = ( 1 + 0 ) ) |
745 | 703 744 | eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN0 ( ( S ` 0 ) ` k ) = ( 1 + 0 ) ) |
746 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
747 | 746 | oveq1i | |- ( ( 1 + 0 ) ^c -u C ) = ( 1 ^c -u C ) |
748 | 720 | negcld | |- ( ( ph /\ -. C e. NN0 ) -> -u C e. CC ) |
749 | 748 | 1cxpd | |- ( ( ph /\ -. C e. NN0 ) -> ( 1 ^c -u C ) = 1 ) |
750 | 747 749 | syl5eq | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 + 0 ) ^c -u C ) = 1 ) |
751 | 745 750 | oveq12d | |- ( ( ph /\ -. C e. NN0 ) -> ( sum_ k e. NN0 ( ( S ` 0 ) ` k ) x. ( ( 1 + 0 ) ^c -u C ) ) = ( ( 1 + 0 ) x. 1 ) ) |
752 | 746 | oveq1i | |- ( ( 1 + 0 ) x. 1 ) = ( 1 x. 1 ) |
753 | 752 724 | eqtri | |- ( ( 1 + 0 ) x. 1 ) = 1 |
754 | 751 753 | eqtrdi | |- ( ( ph /\ -. C e. NN0 ) -> ( sum_ k e. NN0 ( ( S ` 0 ) ` k ) x. ( ( 1 + 0 ) ^c -u C ) ) = 1 ) |
755 | 162 | ffnd | |- ( ( ph /\ -. C e. NN0 ) -> P Fn D ) |
756 | 175 | ffnd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) Fn D ) |
757 | 43 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> P = ( x e. D |-> sum_ k e. NN0 ( ( S ` x ) ` k ) ) ) |
758 | simplr | |- ( ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) /\ k e. NN0 ) -> x = 0 ) |
|
759 | 758 | fveq2d | |- ( ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) /\ k e. NN0 ) -> ( S ` x ) = ( S ` 0 ) ) |
760 | 759 | fveq1d | |- ( ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) /\ k e. NN0 ) -> ( ( S ` x ) ` k ) = ( ( S ` 0 ) ` k ) ) |
761 | 760 | sumeq2dv | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) -> sum_ k e. NN0 ( ( S ` x ) ` k ) = sum_ k e. NN0 ( ( S ` 0 ) ` k ) ) |
762 | simpr | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> 0 e. D ) |
|
763 | sumex | |- sum_ k e. NN0 ( ( S ` 0 ) ` k ) e. _V |
|
764 | 763 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> sum_ k e. NN0 ( ( S ` 0 ) ` k ) e. _V ) |
765 | 757 761 762 764 | fvmptd | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> ( P ` 0 ) = sum_ k e. NN0 ( ( S ` 0 ) ` k ) ) |
766 | 174 | a1i | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) = ( x e. D |-> ( ( 1 + x ) ^c -u C ) ) ) |
767 | simpr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) -> x = 0 ) |
|
768 | 767 | oveq2d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) -> ( 1 + x ) = ( 1 + 0 ) ) |
769 | 768 | oveq1d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) /\ x = 0 ) -> ( ( 1 + x ) ^c -u C ) = ( ( 1 + 0 ) ^c -u C ) ) |
770 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> ( ( 1 + 0 ) ^c -u C ) e. _V ) |
|
771 | 766 769 762 770 | fvmptd | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> ( ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ` 0 ) = ( ( 1 + 0 ) ^c -u C ) ) |
772 | 755 756 183 183 184 765 771 | ofval | |- ( ( ( ph /\ -. C e. NN0 ) /\ 0 e. D ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ` 0 ) = ( sum_ k e. NN0 ( ( S ` 0 ) ` k ) x. ( ( 1 + 0 ) ^c -u C ) ) ) |
773 | 674 772 | mpdan | |- ( ( ph /\ -. C e. NN0 ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ` 0 ) = ( sum_ k e. NN0 ( ( S ` 0 ) ` k ) x. ( ( 1 + 0 ) ^c -u C ) ) ) |
774 | 193 | fveq1i | |- ( ( D X. { 1 } ) ` 0 ) = ( ( b e. D |-> 1 ) ` 0 ) |
775 | 186 | fvconst2 | |- ( 0 e. D -> ( ( D X. { 1 } ) ` 0 ) = 1 ) |
776 | 674 775 | syl | |- ( ( ph /\ -. C e. NN0 ) -> ( ( D X. { 1 } ) ` 0 ) = 1 ) |
777 | 774 776 | eqtr3id | |- ( ( ph /\ -. C e. NN0 ) -> ( ( b e. D |-> 1 ) ` 0 ) = 1 ) |
778 | 754 773 777 | 3eqtr4d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ` 0 ) = ( ( b e. D |-> 1 ) ` 0 ) ) |
779 | 99 100 101 185 201 636 668 674 778 | dv11cn | |- ( ( ph /\ -. C e. NN0 ) -> ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> 1 ) ) |
780 | 779 | oveq1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF / ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( ( b e. D |-> 1 ) oF / ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) ) |
781 | nfv | |- F/ b ( 1 + x ) =/= 0 |
|
782 | 106 781 | nfim | |- F/ b ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( 1 + x ) =/= 0 ) |
783 | 172 | neeq1d | |- ( b = x -> ( ( 1 + b ) =/= 0 <-> ( 1 + x ) =/= 0 ) ) |
784 | 110 783 | imbi12d | |- ( b = x -> ( ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 + b ) =/= 0 ) <-> ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( 1 + x ) =/= 0 ) ) ) |
785 | 782 784 575 | chvarfv | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( 1 + x ) =/= 0 ) |
786 | 166 785 168 | cxpne0d | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( ( 1 + x ) ^c -u C ) =/= 0 ) |
787 | eldifsn | |- ( ( ( 1 + x ) ^c -u C ) e. ( CC \ { 0 } ) <-> ( ( ( 1 + x ) ^c -u C ) e. CC /\ ( ( 1 + x ) ^c -u C ) =/= 0 ) ) |
|
788 | 169 786 787 | sylanbrc | |- ( ( ( ph /\ -. C e. NN0 ) /\ x e. D ) -> ( ( 1 + x ) ^c -u C ) e. ( CC \ { 0 } ) ) |
789 | 788 174 | fmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) : D --> ( CC \ { 0 } ) ) |
790 | ofdivcan4 | |- ( ( D e. _V /\ P : D --> CC /\ ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) : D --> ( CC \ { 0 } ) ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF / ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = P ) |
|
791 | 183 162 789 790 | syl3anc | |- ( ( ph /\ -. C e. NN0 ) -> ( ( P oF x. ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) oF / ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = P ) |
792 | eqidd | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> 1 ) = ( b e. D |-> 1 ) ) |
|
793 | 104 29 183 239 604 792 595 | offval2f | |- ( ( ph /\ -. C e. NN0 ) -> ( ( b e. D |-> 1 ) oF / ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> ( 1 / ( ( 1 + b ) ^c -u C ) ) ) ) |
794 | 780 791 793 | 3eqtr3d | |- ( ( ph /\ -. C e. NN0 ) -> P = ( b e. D |-> ( 1 / ( ( 1 + b ) ^c -u C ) ) ) ) |
795 | 553 575 603 | cxpnegd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c -u -u C ) = ( 1 / ( ( 1 + b ) ^c -u C ) ) ) |
796 | 236 | negnegd | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> -u -u C = C ) |
797 | 796 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( ( 1 + b ) ^c -u -u C ) = ( ( 1 + b ) ^c C ) ) |
798 | 795 797 | eqtr3d | |- ( ( ( ph /\ -. C e. NN0 ) /\ b e. D ) -> ( 1 / ( ( 1 + b ) ^c -u C ) ) = ( ( 1 + b ) ^c C ) ) |
799 | 798 | mpteq2dva | |- ( ( ph /\ -. C e. NN0 ) -> ( b e. D |-> ( 1 / ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> ( ( 1 + b ) ^c C ) ) ) |
800 | 794 799 | eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> P = ( b e. D |-> ( ( 1 + b ) ^c C ) ) ) |
801 | nfcv | |- F/_ x ( ( 1 + b ) ^c C ) |
|
802 | nfcv | |- F/_ b ( ( 1 + x ) ^c C ) |
|
803 | 172 | oveq1d | |- ( b = x -> ( ( 1 + b ) ^c C ) = ( ( 1 + x ) ^c C ) ) |
804 | 29 30 801 802 803 | cbvmptf | |- ( b e. D |-> ( ( 1 + b ) ^c C ) ) = ( x e. D |-> ( ( 1 + x ) ^c C ) ) |
805 | 800 804 | eqtrdi | |- ( ( ph /\ -. C e. NN0 ) -> P = ( x e. D |-> ( ( 1 + x ) ^c C ) ) ) |
806 | simpr | |- ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) -> x = ( B / A ) ) |
|
807 | 806 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) -> ( 1 + x ) = ( 1 + ( B / A ) ) ) |
808 | 807 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ x = ( B / A ) ) -> ( ( 1 + x ) ^c C ) = ( ( 1 + ( B / A ) ) ^c C ) ) |
809 | 1cnd | |- ( ( ph /\ -. C e. NN0 ) -> 1 e. CC ) |
|
810 | 809 63 | addcld | |- ( ( ph /\ -. C e. NN0 ) -> ( 1 + ( B / A ) ) e. CC ) |
811 | 810 720 | cxpcld | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 + ( B / A ) ) ^c C ) e. CC ) |
812 | 805 808 92 811 | fvmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( P ` ( B / A ) ) = ( ( 1 + ( B / A ) ) ^c C ) ) |
813 | 704 | adantlr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = ( B / A ) ) /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
814 | simplr | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = ( B / A ) ) /\ k e. NN0 ) -> b = ( B / A ) ) |
|
815 | 814 | oveq1d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = ( B / A ) ) /\ k e. NN0 ) -> ( b ^ k ) = ( ( B / A ) ^ k ) ) |
816 | 813 815 | oveq12d | |- ( ( ( ( ph /\ -. C e. NN0 ) /\ b = ( B / A ) ) /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) |
817 | 816 | mpteq2dva | |- ( ( ( ph /\ -. C e. NN0 ) /\ b = ( B / A ) ) -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) = ( k e. NN0 |-> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) ) |
818 | 122 | mptex | |- ( k e. NN0 |-> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) e. _V |
819 | 818 | a1i | |- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) e. _V ) |
820 | 513 817 63 819 | fvmptd | |- ( ( ph /\ -. C e. NN0 ) -> ( S ` ( B / A ) ) = ( k e. NN0 |-> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) ) |
821 | ovexd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) e. _V ) |
|
822 | 820 821 | fvmpt2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( S ` ( B / A ) ) ` k ) = ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) |
823 | 822 | sumeq2dv | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN0 ( ( S ` ( B / A ) ) ` k ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) |
824 | 95 812 823 | 3eqtr3d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 + ( B / A ) ) ^c C ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) ) |
825 | 824 | oveq1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( 1 + ( B / A ) ) ^c C ) x. ( A ^c C ) ) = ( sum_ k e. NN0 ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) ) |
826 | 2 1 | rerpdivcld | |- ( ph -> ( B / A ) e. RR ) |
827 | 826 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> ( B / A ) e. RR ) |
828 | 69 827 | readdcld | |- ( ( ph /\ -. C e. NN0 ) -> ( 1 + ( B / A ) ) e. RR ) |
829 | df-neg | |- -u ( B / A ) = ( 0 - ( B / A ) ) |
|
830 | 826 | recnd | |- ( ph -> ( B / A ) e. CC ) |
831 | 830 | negcld | |- ( ph -> -u ( B / A ) e. CC ) |
832 | 831 | abscld | |- ( ph -> ( abs ` -u ( B / A ) ) e. RR ) |
833 | 1red | |- ( ph -> 1 e. RR ) |
|
834 | 830 | absnegd | |- ( ph -> ( abs ` -u ( B / A ) ) = ( abs ` ( B / A ) ) ) |
835 | 1 | rpne0d | |- ( ph -> A =/= 0 ) |
836 | 49 51 835 | absdivd | |- ( ph -> ( abs ` ( B / A ) ) = ( ( abs ` B ) / ( abs ` A ) ) ) |
837 | 834 836 | eqtrd | |- ( ph -> ( abs ` -u ( B / A ) ) = ( ( abs ` B ) / ( abs ` A ) ) ) |
838 | 49 | abscld | |- ( ph -> ( abs ` B ) e. RR ) |
839 | 669 | a1i | |- ( ph -> 1 e. RR+ ) |
840 | 51 835 | absrpcld | |- ( ph -> ( abs ` A ) e. RR+ ) |
841 | 838 | recnd | |- ( ph -> ( abs ` B ) e. CC ) |
842 | 841 | div1d | |- ( ph -> ( ( abs ` B ) / 1 ) = ( abs ` B ) ) |
843 | 842 3 | eqbrtrd | |- ( ph -> ( ( abs ` B ) / 1 ) < ( abs ` A ) ) |
844 | 838 839 840 843 | ltdiv23d | |- ( ph -> ( ( abs ` B ) / ( abs ` A ) ) < 1 ) |
845 | 837 844 | eqbrtrd | |- ( ph -> ( abs ` -u ( B / A ) ) < 1 ) |
846 | 832 833 845 | ltled | |- ( ph -> ( abs ` -u ( B / A ) ) <_ 1 ) |
847 | 826 | renegcld | |- ( ph -> -u ( B / A ) e. RR ) |
848 | 847 833 | absled | |- ( ph -> ( ( abs ` -u ( B / A ) ) <_ 1 <-> ( -u 1 <_ -u ( B / A ) /\ -u ( B / A ) <_ 1 ) ) ) |
849 | 846 848 | mpbid | |- ( ph -> ( -u 1 <_ -u ( B / A ) /\ -u ( B / A ) <_ 1 ) ) |
850 | 849 | simprd | |- ( ph -> -u ( B / A ) <_ 1 ) |
851 | 829 850 | eqbrtrrid | |- ( ph -> ( 0 - ( B / A ) ) <_ 1 ) |
852 | 0red | |- ( ph -> 0 e. RR ) |
|
853 | 852 826 833 | lesubaddd | |- ( ph -> ( ( 0 - ( B / A ) ) <_ 1 <-> 0 <_ ( 1 + ( B / A ) ) ) ) |
854 | 851 853 | mpbid | |- ( ph -> 0 <_ ( 1 + ( B / A ) ) ) |
855 | 854 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> 0 <_ ( 1 + ( B / A ) ) ) |
856 | 1 | adantr | |- ( ( ph /\ -. C e. NN0 ) -> A e. RR+ ) |
857 | 856 | rpred | |- ( ( ph /\ -. C e. NN0 ) -> A e. RR ) |
858 | 856 | rpge0d | |- ( ( ph /\ -. C e. NN0 ) -> 0 <_ A ) |
859 | 828 855 857 858 720 | mulcxpd | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( 1 + ( B / A ) ) x. A ) ^c C ) = ( ( ( 1 + ( B / A ) ) ^c C ) x. ( A ^c C ) ) ) |
860 | 809 63 52 | adddird | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 + ( B / A ) ) x. A ) = ( ( 1 x. A ) + ( ( B / A ) x. A ) ) ) |
861 | 52 | mulid2d | |- ( ( ph /\ -. C e. NN0 ) -> ( 1 x. A ) = A ) |
862 | 50 52 62 | divcan1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( B / A ) x. A ) = B ) |
863 | 861 862 | oveq12d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 x. A ) + ( ( B / A ) x. A ) ) = ( A + B ) ) |
864 | 860 863 | eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> ( ( 1 + ( B / A ) ) x. A ) = ( A + B ) ) |
865 | 864 | oveq1d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( 1 + ( B / A ) ) x. A ) ^c C ) = ( ( A + B ) ^c C ) ) |
866 | 859 865 | eqtr3d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( ( 1 + ( B / A ) ) ^c C ) x. ( A ^c C ) ) = ( ( A + B ) ^c C ) ) |
867 | 63 | adantr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( B / A ) e. CC ) |
868 | simpr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
|
869 | 867 868 | expcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( B / A ) ^ k ) e. CC ) |
870 | 733 869 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) e. CC ) |
871 | 1 2 3 4 5 6 7 8 9 | binomcxplemcvg | |- ( ( ph /\ ( B / A ) e. D ) -> ( seq 0 ( + , ( S ` ( B / A ) ) ) e. dom ~~> /\ seq 1 ( + , ( E ` ( B / A ) ) ) e. dom ~~> ) ) |
872 | 871 | simpld | |- ( ( ph /\ ( B / A ) e. D ) -> seq 0 ( + , ( S ` ( B / A ) ) ) e. dom ~~> ) |
873 | 92 872 | syldan | |- ( ( ph /\ -. C e. NN0 ) -> seq 0 ( + , ( S ` ( B / A ) ) ) e. dom ~~> ) |
874 | 52 720 | cxpcld | |- ( ( ph /\ -. C e. NN0 ) -> ( A ^c C ) e. CC ) |
875 | 113 675 822 870 873 874 | isummulc1 | |- ( ( ph /\ -. C e. NN0 ) -> ( sum_ k e. NN0 ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = sum_ k e. NN0 ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) ) |
876 | 49 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> B e. CC ) |
877 | 51 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> A e. CC ) |
878 | 835 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> A =/= 0 ) |
879 | 876 877 878 | divrecd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( B / A ) = ( B x. ( 1 / A ) ) ) |
880 | 879 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( B / A ) ^ k ) = ( ( B x. ( 1 / A ) ) ^ k ) ) |
881 | 877 878 | reccld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( 1 / A ) e. CC ) |
882 | 876 881 868 | mulexpd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( B x. ( 1 / A ) ) ^ k ) = ( ( B ^ k ) x. ( ( 1 / A ) ^ k ) ) ) |
883 | 880 882 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( B / A ) ^ k ) = ( ( B ^ k ) x. ( ( 1 / A ) ^ k ) ) ) |
884 | 883 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) = ( ( C _Cc k ) x. ( ( B ^ k ) x. ( ( 1 / A ) ^ k ) ) ) ) |
885 | 876 868 | expcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
886 | 881 868 | expcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) |
887 | 733 885 886 | mulassd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( 1 / A ) ^ k ) ) = ( ( C _Cc k ) x. ( ( B ^ k ) x. ( ( 1 / A ) ^ k ) ) ) ) |
888 | 884 887 | eqtr4d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) = ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
889 | 888 | oveq1d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = ( ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( 1 / A ) ^ k ) ) x. ( A ^c C ) ) ) |
890 | 733 885 | mulcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( C _Cc k ) x. ( B ^ k ) ) e. CC ) |
891 | 874 | adantr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c C ) e. CC ) |
892 | 890 886 891 | mul32d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( 1 / A ) ^ k ) ) x. ( A ^c C ) ) = ( ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( A ^c C ) ) x. ( ( 1 / A ) ^ k ) ) ) |
893 | 890 891 886 | mulassd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( A ^c C ) ) x. ( ( 1 / A ) ^ k ) ) = ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( A ^c C ) x. ( ( 1 / A ) ^ k ) ) ) ) |
894 | 889 892 893 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( A ^c C ) x. ( ( 1 / A ) ^ k ) ) ) ) |
895 | 868 | nn0cnd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
896 | 877 895 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c k ) e. CC ) |
897 | 877 878 895 | cxpne0d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c k ) =/= 0 ) |
898 | 891 896 897 | divrecd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( A ^c C ) / ( A ^c k ) ) = ( ( A ^c C ) x. ( 1 / ( A ^c k ) ) ) ) |
899 | 4 | ad2antrr | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> C e. CC ) |
900 | 877 878 899 895 | cxpsubd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c ( C - k ) ) = ( ( A ^c C ) / ( A ^c k ) ) ) |
901 | 868 | nn0zd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> k e. ZZ ) |
902 | 877 878 901 | exprecd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) = ( 1 / ( A ^ k ) ) ) |
903 | cxpexp | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^c k ) = ( A ^ k ) ) |
|
904 | 877 868 903 | syl2anc | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c k ) = ( A ^ k ) ) |
905 | 904 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( 1 / ( A ^c k ) ) = ( 1 / ( A ^ k ) ) ) |
906 | 902 905 | eqtr4d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) = ( 1 / ( A ^c k ) ) ) |
907 | 906 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( A ^c C ) x. ( ( 1 / A ) ^ k ) ) = ( ( A ^c C ) x. ( 1 / ( A ^c k ) ) ) ) |
908 | 898 900 907 | 3eqtr4rd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( A ^c C ) x. ( ( 1 / A ) ^ k ) ) = ( A ^c ( C - k ) ) ) |
909 | 908 | oveq2d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( ( A ^c C ) x. ( ( 1 / A ) ^ k ) ) ) = ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( A ^c ( C - k ) ) ) ) |
910 | 899 895 | subcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( C - k ) e. CC ) |
911 | 877 910 | cxpcld | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( A ^c ( C - k ) ) e. CC ) |
912 | 733 885 911 | mul32d | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( B ^ k ) ) x. ( A ^c ( C - k ) ) ) = ( ( ( C _Cc k ) x. ( A ^c ( C - k ) ) ) x. ( B ^ k ) ) ) |
913 | 894 909 912 | 3eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = ( ( ( C _Cc k ) x. ( A ^c ( C - k ) ) ) x. ( B ^ k ) ) ) |
914 | 733 911 885 | mulassd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( A ^c ( C - k ) ) ) x. ( B ^ k ) ) = ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
915 | 913 914 | eqtrd | |- ( ( ( ph /\ -. C e. NN0 ) /\ k e. NN0 ) -> ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
916 | 915 | sumeq2dv | |- ( ( ph /\ -. C e. NN0 ) -> sum_ k e. NN0 ( ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
917 | 875 916 | eqtrd | |- ( ( ph /\ -. C e. NN0 ) -> ( sum_ k e. NN0 ( ( C _Cc k ) x. ( ( B / A ) ^ k ) ) x. ( A ^c C ) ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |
918 | 825 866 917 | 3eqtr3d | |- ( ( ph /\ -. C e. NN0 ) -> ( ( A + B ) ^c C ) = sum_ k e. NN0 ( ( C _Cc k ) x. ( ( A ^c ( C - k ) ) x. ( B ^ k ) ) ) ) |