Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
6 |
|
binomcxplem.s |
|- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
7 |
|
binomcxplem.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
8 |
|
simpl |
|- ( ( b = x /\ k e. NN0 ) -> b = x ) |
9 |
8
|
oveq1d |
|- ( ( b = x /\ k e. NN0 ) -> ( b ^ k ) = ( x ^ k ) ) |
10 |
9
|
oveq2d |
|- ( ( b = x /\ k e. NN0 ) -> ( ( F ` k ) x. ( b ^ k ) ) = ( ( F ` k ) x. ( x ^ k ) ) ) |
11 |
10
|
mpteq2dva |
|- ( b = x -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) = ( k e. NN0 |-> ( ( F ` k ) x. ( x ^ k ) ) ) ) |
12 |
|
fveq2 |
|- ( k = y -> ( F ` k ) = ( F ` y ) ) |
13 |
|
oveq2 |
|- ( k = y -> ( x ^ k ) = ( x ^ y ) ) |
14 |
12 13
|
oveq12d |
|- ( k = y -> ( ( F ` k ) x. ( x ^ k ) ) = ( ( F ` y ) x. ( x ^ y ) ) ) |
15 |
14
|
cbvmptv |
|- ( k e. NN0 |-> ( ( F ` k ) x. ( x ^ k ) ) ) = ( y e. NN0 |-> ( ( F ` y ) x. ( x ^ y ) ) ) |
16 |
11 15
|
eqtrdi |
|- ( b = x -> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) = ( y e. NN0 |-> ( ( F ` y ) x. ( x ^ y ) ) ) ) |
17 |
16
|
cbvmptv |
|- ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) = ( x e. CC |-> ( y e. NN0 |-> ( ( F ` y ) x. ( x ^ y ) ) ) ) |
18 |
6 17
|
eqtri |
|- S = ( x e. CC |-> ( y e. NN0 |-> ( ( F ` y ) x. ( x ^ y ) ) ) ) |
19 |
4
|
ad2antrr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ j e. NN0 ) -> C e. CC ) |
20 |
|
simpr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ j e. NN0 ) -> j e. NN0 ) |
21 |
19 20
|
bcccl |
|- ( ( ( ph /\ -. C e. NN0 ) /\ j e. NN0 ) -> ( C _Cc j ) e. CC ) |
22 |
21 5
|
fmptd |
|- ( ( ph /\ -. C e. NN0 ) -> F : NN0 --> CC ) |
23 |
|
fvoveq1 |
|- ( k = i -> ( F ` ( k + 1 ) ) = ( F ` ( i + 1 ) ) ) |
24 |
|
fveq2 |
|- ( k = i -> ( F ` k ) = ( F ` i ) ) |
25 |
23 24
|
oveq12d |
|- ( k = i -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) = ( ( F ` ( i + 1 ) ) / ( F ` i ) ) ) |
26 |
25
|
fveq2d |
|- ( k = i -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) = ( abs ` ( ( F ` ( i + 1 ) ) / ( F ` i ) ) ) ) |
27 |
26
|
cbvmptv |
|- ( k e. NN0 |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) = ( i e. NN0 |-> ( abs ` ( ( F ` ( i + 1 ) ) / ( F ` i ) ) ) ) |
28 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
29 |
|
0nn0 |
|- 0 e. NN0 |
30 |
29
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> 0 e. NN0 ) |
31 |
5
|
a1i |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
32 |
|
simpr |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) /\ j = i ) -> j = i ) |
33 |
32
|
oveq2d |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) /\ j = i ) -> ( C _Cc j ) = ( C _Cc i ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> i e. NN0 ) |
35 |
|
ovexd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> ( C _Cc i ) e. _V ) |
36 |
31 33 34 35
|
fvmptd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> ( F ` i ) = ( C _Cc i ) ) |
37 |
|
elfznn0 |
|- ( C e. ( 0 ... ( i - 1 ) ) -> C e. NN0 ) |
38 |
37
|
con3i |
|- ( -. C e. NN0 -> -. C e. ( 0 ... ( i - 1 ) ) ) |
39 |
38
|
ad2antlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> -. C e. ( 0 ... ( i - 1 ) ) ) |
40 |
4
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> C e. CC ) |
41 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
42 |
40 41
|
bcc0 |
|- ( ( ph /\ i e. NN0 ) -> ( ( C _Cc i ) = 0 <-> C e. ( 0 ... ( i - 1 ) ) ) ) |
43 |
42
|
necon3abid |
|- ( ( ph /\ i e. NN0 ) -> ( ( C _Cc i ) =/= 0 <-> -. C e. ( 0 ... ( i - 1 ) ) ) ) |
44 |
43
|
adantlr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> ( ( C _Cc i ) =/= 0 <-> -. C e. ( 0 ... ( i - 1 ) ) ) ) |
45 |
39 44
|
mpbird |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> ( C _Cc i ) =/= 0 ) |
46 |
36 45
|
eqnetrd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ i e. NN0 ) -> ( F ` i ) =/= 0 ) |
47 |
1 2 3 4 5
|
binomcxplemfrat |
|- ( ( ph /\ -. C e. NN0 ) -> ( k e. NN0 |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) ~~> 1 ) |
48 |
|
ax-1ne0 |
|- 1 =/= 0 |
49 |
48
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> 1 =/= 0 ) |
50 |
18 22 7 27 28 30 46 47 49
|
radcnvrat |
|- ( ( ph /\ -. C e. NN0 ) -> R = ( 1 / 1 ) ) |
51 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
52 |
50 51
|
eqtrdi |
|- ( ( ph /\ -. C e. NN0 ) -> R = 1 ) |