| Step |
Hyp |
Ref |
Expression |
| 1 |
|
radcnvrat.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 2 |
|
radcnvrat.a |
|- ( ph -> A : NN0 --> CC ) |
| 3 |
|
radcnvrat.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
| 4 |
|
radcnvrat.rat |
|- D = ( k e. NN0 |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |
| 5 |
|
radcnvrat.z |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
radcnvrat.m |
|- ( ph -> M e. NN0 ) |
| 7 |
|
radcnvrat.n0 |
|- ( ( ph /\ k e. Z ) -> ( A ` k ) =/= 0 ) |
| 8 |
|
radcnvrat.l |
|- ( ph -> D ~~> L ) |
| 9 |
|
radcnvrat.ln0 |
|- ( ph -> L =/= 0 ) |
| 10 |
|
xrltso |
|- < Or RR* |
| 11 |
10
|
a1i |
|- ( ph -> < Or RR* ) |
| 12 |
6
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 13 |
5
|
reseq2i |
|- ( D |` Z ) = ( D |` ( ZZ>= ` M ) ) |
| 14 |
|
nn0ex |
|- NN0 e. _V |
| 15 |
14
|
mptex |
|- ( k e. NN0 |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) e. _V |
| 16 |
4 15
|
eqeltri |
|- D e. _V |
| 17 |
|
climres |
|- ( ( M e. ZZ /\ D e. _V ) -> ( ( D |` ( ZZ>= ` M ) ) ~~> L <-> D ~~> L ) ) |
| 18 |
12 16 17
|
sylancl |
|- ( ph -> ( ( D |` ( ZZ>= ` M ) ) ~~> L <-> D ~~> L ) ) |
| 19 |
8 18
|
mpbird |
|- ( ph -> ( D |` ( ZZ>= ` M ) ) ~~> L ) |
| 20 |
13 19
|
eqbrtrid |
|- ( ph -> ( D |` Z ) ~~> L ) |
| 21 |
4
|
reseq1i |
|- ( D |` Z ) = ( ( k e. NN0 |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |` Z ) |
| 22 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 23 |
6 22
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 24 |
23
|
ex |
|- ( ph -> ( k e. ( ZZ>= ` M ) -> k e. NN0 ) ) |
| 25 |
24
|
ssrdv |
|- ( ph -> ( ZZ>= ` M ) C_ NN0 ) |
| 26 |
5 25
|
eqsstrid |
|- ( ph -> Z C_ NN0 ) |
| 27 |
26
|
resmptd |
|- ( ph -> ( ( k e. NN0 |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |` Z ) = ( k e. Z |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) ) |
| 28 |
21 27
|
eqtrid |
|- ( ph -> ( D |` Z ) = ( k e. Z |-> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) ) |
| 29 |
|
fvexd |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) e. _V ) |
| 30 |
28 29
|
fvmpt2d |
|- ( ( ph /\ k e. Z ) -> ( ( D |` Z ) ` k ) = ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |
| 31 |
5
|
peano2uzs |
|- ( k e. Z -> ( k + 1 ) e. Z ) |
| 32 |
26
|
sselda |
|- ( ( ph /\ ( k + 1 ) e. Z ) -> ( k + 1 ) e. NN0 ) |
| 33 |
2
|
ffvelcdmda |
|- ( ( ph /\ ( k + 1 ) e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 34 |
32 33
|
syldan |
|- ( ( ph /\ ( k + 1 ) e. Z ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 35 |
31 34
|
sylan2 |
|- ( ( ph /\ k e. Z ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 36 |
26
|
sselda |
|- ( ( ph /\ k e. Z ) -> k e. NN0 ) |
| 37 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 38 |
36 37
|
syldan |
|- ( ( ph /\ k e. Z ) -> ( A ` k ) e. CC ) |
| 39 |
35 38 7
|
divcld |
|- ( ( ph /\ k e. Z ) -> ( ( A ` ( k + 1 ) ) / ( A ` k ) ) e. CC ) |
| 40 |
39
|
abscld |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) e. RR ) |
| 41 |
30 40
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( D |` Z ) ` k ) e. RR ) |
| 42 |
5 12 20 41
|
climrecl |
|- ( ph -> L e. RR ) |
| 43 |
42 9
|
rereccld |
|- ( ph -> ( 1 / L ) e. RR ) |
| 44 |
43
|
rexrd |
|- ( ph -> ( 1 / L ) e. RR* ) |
| 45 |
|
simpr |
|- ( ( ph /\ x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 46 |
|
elrabi |
|- ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } -> x e. RR ) |
| 47 |
43
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( 1 / L ) e. RR ) |
| 48 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 49 |
48
|
abscld |
|- ( x e. RR -> ( abs ` x ) e. RR ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( abs ` x ) e. RR ) |
| 51 |
47 50
|
ltlend |
|- ( ( ph /\ x e. RR ) -> ( ( 1 / L ) < ( abs ` x ) <-> ( ( 1 / L ) <_ ( abs ` x ) /\ ( abs ` x ) =/= ( 1 / L ) ) ) ) |
| 52 |
51
|
simplbda |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < ( abs ` x ) ) -> ( abs ` x ) =/= ( 1 / L ) ) |
| 53 |
51
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) < ( abs ` x ) <-> ( ( 1 / L ) <_ ( abs ` x ) /\ ( abs ` x ) =/= ( 1 / L ) ) ) ) |
| 54 |
|
simpr |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( abs ` x ) =/= ( 1 / L ) ) |
| 55 |
54
|
biantrud |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) <_ ( abs ` x ) <-> ( ( 1 / L ) <_ ( abs ` x ) /\ ( abs ` x ) =/= ( 1 / L ) ) ) ) |
| 56 |
47 50
|
lenltd |
|- ( ( ph /\ x e. RR ) -> ( ( 1 / L ) <_ ( abs ` x ) <-> -. ( abs ` x ) < ( 1 / L ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) <_ ( abs ` x ) <-> -. ( abs ` x ) < ( 1 / L ) ) ) |
| 58 |
53 55 57
|
3bitr2d |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) < ( abs ` x ) <-> -. ( abs ` x ) < ( 1 / L ) ) ) |
| 59 |
|
1cnd |
|- ( ( ph /\ x e. RR ) -> 1 e. CC ) |
| 60 |
50
|
recnd |
|- ( ( ph /\ x e. RR ) -> ( abs ` x ) e. CC ) |
| 61 |
42
|
recnd |
|- ( ph -> L e. CC ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ x e. RR ) -> L e. CC ) |
| 63 |
9
|
adantr |
|- ( ( ph /\ x e. RR ) -> L =/= 0 ) |
| 64 |
59 60 62 63
|
divmul3d |
|- ( ( ph /\ x e. RR ) -> ( ( 1 / L ) = ( abs ` x ) <-> 1 = ( ( abs ` x ) x. L ) ) ) |
| 65 |
|
eqcom |
|- ( ( 1 / L ) = ( abs ` x ) <-> ( abs ` x ) = ( 1 / L ) ) |
| 66 |
|
eqcom |
|- ( 1 = ( ( abs ` x ) x. L ) <-> ( ( abs ` x ) x. L ) = 1 ) |
| 67 |
64 65 66
|
3bitr3g |
|- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) = ( 1 / L ) <-> ( ( abs ` x ) x. L ) = 1 ) ) |
| 68 |
67
|
necon3bid |
|- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) =/= ( 1 / L ) <-> ( ( abs ` x ) x. L ) =/= 1 ) ) |
| 69 |
68
|
biimpa |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( abs ` x ) x. L ) =/= 1 ) |
| 70 |
|
1red |
|- ( ( ph /\ x e. RR ) -> 1 e. RR ) |
| 71 |
|
fvres |
|- ( k e. Z -> ( ( D |` Z ) ` k ) = ( D ` k ) ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( D |` Z ) ` k ) = ( D ` k ) ) |
| 73 |
72 41
|
eqeltrrd |
|- ( ( ph /\ k e. Z ) -> ( D ` k ) e. RR ) |
| 74 |
39
|
absge0d |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |
| 75 |
74 30
|
breqtrrd |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( ( D |` Z ) ` k ) ) |
| 76 |
75 72
|
breqtrd |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( D ` k ) ) |
| 77 |
5 12 8 73 76
|
climge0 |
|- ( ph -> 0 <_ L ) |
| 78 |
42 77 9
|
ne0gt0d |
|- ( ph -> 0 < L ) |
| 79 |
42 78
|
elrpd |
|- ( ph -> L e. RR+ ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ x e. RR ) -> L e. RR+ ) |
| 81 |
50 70 80
|
ltmuldivd |
|- ( ( ph /\ x e. RR ) -> ( ( ( abs ` x ) x. L ) < 1 <-> ( abs ` x ) < ( 1 / L ) ) ) |
| 82 |
81
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> ( abs ` x ) < ( 1 / L ) ) ) |
| 83 |
|
elun |
|- ( x e. ( ( RR i^i { 0 } ) u. ( RR \ { 0 } ) ) <-> ( x e. ( RR i^i { 0 } ) \/ x e. ( RR \ { 0 } ) ) ) |
| 84 |
|
inundif |
|- ( ( RR i^i { 0 } ) u. ( RR \ { 0 } ) ) = RR |
| 85 |
84
|
eleq2i |
|- ( x e. ( ( RR i^i { 0 } ) u. ( RR \ { 0 } ) ) <-> x e. RR ) |
| 86 |
83 85
|
bitr3i |
|- ( ( x e. ( RR i^i { 0 } ) \/ x e. ( RR \ { 0 } ) ) <-> x e. RR ) |
| 87 |
|
elin |
|- ( x e. ( RR i^i { 0 } ) <-> ( x e. RR /\ x e. { 0 } ) ) |
| 88 |
87
|
simprbi |
|- ( x e. ( RR i^i { 0 } ) -> x e. { 0 } ) |
| 89 |
|
elsni |
|- ( x e. { 0 } -> x = 0 ) |
| 90 |
88 89
|
syl |
|- ( x e. ( RR i^i { 0 } ) -> x = 0 ) |
| 91 |
|
fveq2 |
|- ( x = 0 -> ( abs ` x ) = ( abs ` 0 ) ) |
| 92 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 93 |
91 92
|
eqtrdi |
|- ( x = 0 -> ( abs ` x ) = 0 ) |
| 94 |
93
|
oveq1d |
|- ( x = 0 -> ( ( abs ` x ) x. L ) = ( 0 x. L ) ) |
| 95 |
61
|
mul02d |
|- ( ph -> ( 0 x. L ) = 0 ) |
| 96 |
94 95
|
sylan9eqr |
|- ( ( ph /\ x = 0 ) -> ( ( abs ` x ) x. L ) = 0 ) |
| 97 |
|
0lt1 |
|- 0 < 1 |
| 98 |
96 97
|
eqbrtrdi |
|- ( ( ph /\ x = 0 ) -> ( ( abs ` x ) x. L ) < 1 ) |
| 99 |
1 2
|
radcnv0 |
|- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 100 |
|
eleq1 |
|- ( x = 0 -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 101 |
99 100
|
syl5ibrcom |
|- ( ph -> ( x = 0 -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 102 |
101
|
imp |
|- ( ( ph /\ x = 0 ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 103 |
98 102
|
2thd |
|- ( ( ph /\ x = 0 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 104 |
90 103
|
sylan2 |
|- ( ( ph /\ x e. ( RR i^i { 0 } ) ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 105 |
104
|
adantlr |
|- ( ( ( ph /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ x e. ( RR i^i { 0 } ) ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 106 |
|
ax-resscn |
|- RR C_ CC |
| 107 |
|
ssdif |
|- ( RR C_ CC -> ( RR \ { 0 } ) C_ ( CC \ { 0 } ) ) |
| 108 |
106 107
|
ax-mp |
|- ( RR \ { 0 } ) C_ ( CC \ { 0 } ) |
| 109 |
108
|
sseli |
|- ( x e. ( RR \ { 0 } ) -> x e. ( CC \ { 0 } ) ) |
| 110 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 111 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> M e. NN0 ) |
| 112 |
|
fvexd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( G ` x ) e. _V ) |
| 113 |
|
eldifi |
|- ( x e. ( CC \ { 0 } ) -> x e. CC ) |
| 114 |
1
|
a1i |
|- ( ph -> G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) ) |
| 115 |
14
|
mptex |
|- ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) e. _V |
| 116 |
115
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) e. _V ) |
| 117 |
114 116
|
fvmpt2d |
|- ( ( ph /\ x e. CC ) -> ( G ` x ) = ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( G ` x ) = ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 119 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
| 120 |
|
oveq2 |
|- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
| 121 |
119 120
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 122 |
121
|
adantl |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) /\ n = k ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 123 |
|
simpr |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> k e. NN0 ) |
| 124 |
|
ovexd |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( x ^ k ) ) e. _V ) |
| 125 |
118 122 123 124
|
fvmptd |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( ( G ` x ) ` k ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 126 |
37
|
adantlr |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 127 |
|
simplr |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> x e. CC ) |
| 128 |
127 123
|
expcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
| 129 |
126 128
|
mulcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( x ^ k ) ) e. CC ) |
| 130 |
125 129
|
eqeltrd |
|- ( ( ( ph /\ x e. CC ) /\ k e. NN0 ) -> ( ( G ` x ) ` k ) e. CC ) |
| 131 |
113 130
|
sylanl2 |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. NN0 ) -> ( ( G ` x ) ` k ) e. CC ) |
| 132 |
131
|
adantlr |
|- ( ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ k e. NN0 ) -> ( ( G ` x ) ` k ) e. CC ) |
| 133 |
36
|
adantlr |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> k e. NN0 ) |
| 134 |
133 125
|
syldan |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( G ` x ) ` k ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 135 |
113 134
|
sylanl2 |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( G ` x ) ` k ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 136 |
38
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( A ` k ) e. CC ) |
| 137 |
113
|
adantl |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 138 |
137
|
adantr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> x e. CC ) |
| 139 |
36
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> k e. NN0 ) |
| 140 |
138 139
|
expcld |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ k ) e. CC ) |
| 141 |
7
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( A ` k ) =/= 0 ) |
| 142 |
|
eldifsni |
|- ( x e. ( CC \ { 0 } ) -> x =/= 0 ) |
| 143 |
142
|
ad2antlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> x =/= 0 ) |
| 144 |
139
|
nn0zd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> k e. ZZ ) |
| 145 |
138 143 144
|
expne0d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ k ) =/= 0 ) |
| 146 |
136 140 141 145
|
mulne0d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( A ` k ) x. ( x ^ k ) ) =/= 0 ) |
| 147 |
135 146
|
eqnetrd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( G ` x ) ` k ) =/= 0 ) |
| 148 |
147
|
adantlr |
|- ( ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ k e. Z ) -> ( ( G ` x ) ` k ) =/= 0 ) |
| 149 |
|
fvoveq1 |
|- ( n = k -> ( ( G ` x ) ` ( n + 1 ) ) = ( ( G ` x ) ` ( k + 1 ) ) ) |
| 150 |
|
fveq2 |
|- ( n = k -> ( ( G ` x ) ` n ) = ( ( G ` x ) ` k ) ) |
| 151 |
149 150
|
oveq12d |
|- ( n = k -> ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) = ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) |
| 152 |
151
|
fveq2d |
|- ( n = k -> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) = ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) ) |
| 153 |
152
|
cbvmptv |
|- ( n e. Z |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) = ( k e. Z |-> ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) ) |
| 154 |
5
|
reseq2i |
|- ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` Z ) = ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` ( ZZ>= ` M ) ) |
| 155 |
26
|
adantr |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> Z C_ NN0 ) |
| 156 |
155
|
resmptd |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` Z ) = ( n e. Z |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ) |
| 157 |
154 156
|
eqtr3id |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` ( ZZ>= ` M ) ) = ( n e. Z |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ) |
| 158 |
12
|
adantr |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> M e. ZZ ) |
| 159 |
8
|
adantr |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> D ~~> L ) |
| 160 |
137
|
abscld |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) e. RR ) |
| 161 |
160
|
recnd |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) e. CC ) |
| 162 |
14
|
mptex |
|- ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) e. _V |
| 163 |
162
|
a1i |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) e. _V ) |
| 164 |
73
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( D ` k ) e. CC ) |
| 165 |
164
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( D ` k ) e. CC ) |
| 166 |
|
eqidd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) = ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ) |
| 167 |
152
|
adantl |
|- ( ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) /\ n = k ) -> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) = ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) ) |
| 168 |
|
fvexd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) e. _V ) |
| 169 |
166 167 139 168
|
fvmptd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ` k ) = ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) ) |
| 170 |
117
|
adantr |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( G ` x ) = ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 171 |
|
simpr |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. Z ) /\ n = ( k + 1 ) ) -> n = ( k + 1 ) ) |
| 172 |
171
|
fveq2d |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. Z ) /\ n = ( k + 1 ) ) -> ( A ` n ) = ( A ` ( k + 1 ) ) ) |
| 173 |
171
|
oveq2d |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. Z ) /\ n = ( k + 1 ) ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
| 174 |
172 173
|
oveq12d |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. Z ) /\ n = ( k + 1 ) ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) ) |
| 175 |
|
1nn0 |
|- 1 e. NN0 |
| 176 |
175
|
a1i |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> 1 e. NN0 ) |
| 177 |
133 176
|
nn0addcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( k + 1 ) e. NN0 ) |
| 178 |
|
ovexd |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) e. _V ) |
| 179 |
170 174 177 178
|
fvmptd |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( G ` x ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) ) |
| 180 |
121
|
adantl |
|- ( ( ( ( ph /\ x e. CC ) /\ k e. Z ) /\ n = k ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 181 |
|
ovexd |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( A ` k ) x. ( x ^ k ) ) e. _V ) |
| 182 |
170 180 133 181
|
fvmptd |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( G ` x ) ` k ) = ( ( A ` k ) x. ( x ^ k ) ) ) |
| 183 |
179 182
|
oveq12d |
|- ( ( ( ph /\ x e. CC ) /\ k e. Z ) -> ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) = ( ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) / ( ( A ` k ) x. ( x ^ k ) ) ) ) |
| 184 |
113 183
|
sylanl2 |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) = ( ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) / ( ( A ` k ) x. ( x ^ k ) ) ) ) |
| 185 |
35
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 186 |
113 177
|
sylanl2 |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( k + 1 ) e. NN0 ) |
| 187 |
138 186
|
expcld |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ ( k + 1 ) ) e. CC ) |
| 188 |
185 136 187 140 141 145
|
divmuldivd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. ( ( x ^ ( k + 1 ) ) / ( x ^ k ) ) ) = ( ( ( A ` ( k + 1 ) ) x. ( x ^ ( k + 1 ) ) ) / ( ( A ` k ) x. ( x ^ k ) ) ) ) |
| 189 |
139
|
nn0cnd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> k e. CC ) |
| 190 |
|
1cnd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> 1 e. CC ) |
| 191 |
189 190
|
pncan2d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( k + 1 ) - k ) = 1 ) |
| 192 |
191
|
oveq2d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ ( ( k + 1 ) - k ) ) = ( x ^ 1 ) ) |
| 193 |
186
|
nn0zd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( k + 1 ) e. ZZ ) |
| 194 |
138 143 144 193
|
expsubd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ ( ( k + 1 ) - k ) ) = ( ( x ^ ( k + 1 ) ) / ( x ^ k ) ) ) |
| 195 |
138
|
exp1d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( x ^ 1 ) = x ) |
| 196 |
192 194 195
|
3eqtr3d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( x ^ ( k + 1 ) ) / ( x ^ k ) ) = x ) |
| 197 |
196
|
oveq2d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. ( ( x ^ ( k + 1 ) ) / ( x ^ k ) ) ) = ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. x ) ) |
| 198 |
184 188 197
|
3eqtr2d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) = ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. x ) ) |
| 199 |
198
|
fveq2d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( abs ` ( ( ( G ` x ) ` ( k + 1 ) ) / ( ( G ` x ) ` k ) ) ) = ( abs ` ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. x ) ) ) |
| 200 |
39
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( A ` ( k + 1 ) ) / ( A ` k ) ) e. CC ) |
| 201 |
200 138
|
absmuld |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) / ( A ` k ) ) x. x ) ) = ( ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) x. ( abs ` x ) ) ) |
| 202 |
169 199 201
|
3eqtrd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ` k ) = ( ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) x. ( abs ` x ) ) ) |
| 203 |
72 30
|
eqtr3d |
|- ( ( ph /\ k e. Z ) -> ( D ` k ) = ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |
| 204 |
203
|
adantlr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( D ` k ) = ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) ) |
| 205 |
204
|
eqcomd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) = ( D ` k ) ) |
| 206 |
205
|
oveq1d |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( abs ` ( ( A ` ( k + 1 ) ) / ( A ` k ) ) ) x. ( abs ` x ) ) = ( ( D ` k ) x. ( abs ` x ) ) ) |
| 207 |
161
|
adantr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( abs ` x ) e. CC ) |
| 208 |
165 207
|
mulcomd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( D ` k ) x. ( abs ` x ) ) = ( ( abs ` x ) x. ( D ` k ) ) ) |
| 209 |
202 206 208
|
3eqtrd |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ k e. Z ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ` k ) = ( ( abs ` x ) x. ( D ` k ) ) ) |
| 210 |
5 158 159 161 163 165 209
|
climmulc2 |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ~~> ( ( abs ` x ) x. L ) ) |
| 211 |
|
climres |
|- ( ( M e. ZZ /\ ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) e. _V ) -> ( ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` ( ZZ>= ` M ) ) ~~> ( ( abs ` x ) x. L ) <-> ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ~~> ( ( abs ` x ) x. L ) ) ) |
| 212 |
158 162 211
|
sylancl |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` ( ZZ>= ` M ) ) ~~> ( ( abs ` x ) x. L ) <-> ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ~~> ( ( abs ` x ) x. L ) ) ) |
| 213 |
210 212
|
mpbird |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( n e. NN0 |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) |` ( ZZ>= ` M ) ) ~~> ( ( abs ` x ) x. L ) ) |
| 214 |
157 213
|
eqbrtrrd |
|- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( n e. Z |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ~~> ( ( abs ` x ) x. L ) ) |
| 215 |
214
|
adantr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( n e. Z |-> ( abs ` ( ( ( G ` x ) ` ( n + 1 ) ) / ( ( G ` x ) ` n ) ) ) ) ~~> ( ( abs ` x ) x. L ) ) |
| 216 |
|
simpr |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( abs ` x ) x. L ) =/= 1 ) |
| 217 |
110 5 111 112 132 148 153 215 216
|
cvgdvgrat |
|- ( ( ( ph /\ x e. ( CC \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 218 |
109 217
|
sylanl2 |
|- ( ( ( ph /\ x e. ( RR \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 219 |
|
eldifi |
|- ( x e. ( RR \ { 0 } ) -> x e. RR ) |
| 220 |
|
fveq2 |
|- ( r = x -> ( G ` r ) = ( G ` x ) ) |
| 221 |
220
|
seqeq3d |
|- ( r = x -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` x ) ) ) |
| 222 |
221
|
eleq1d |
|- ( r = x -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 223 |
222
|
elrab3 |
|- ( x e. RR -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 224 |
219 223
|
syl |
|- ( x e. ( RR \ { 0 } ) -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 225 |
224
|
ad2antlr |
|- ( ( ( ph /\ x e. ( RR \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> seq 0 ( + , ( G ` x ) ) e. dom ~~> ) ) |
| 226 |
218 225
|
bitr4d |
|- ( ( ( ph /\ x e. ( RR \ { 0 } ) ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 227 |
226
|
an32s |
|- ( ( ( ph /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ x e. ( RR \ { 0 } ) ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 228 |
105 227
|
jaodan |
|- ( ( ( ph /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ ( x e. ( RR i^i { 0 } ) \/ x e. ( RR \ { 0 } ) ) ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 229 |
86 228
|
sylan2br |
|- ( ( ( ph /\ ( ( abs ` x ) x. L ) =/= 1 ) /\ x e. RR ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 230 |
229
|
an32s |
|- ( ( ( ph /\ x e. RR ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( ( abs ` x ) x. L ) < 1 <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 231 |
82 230
|
bitr3d |
|- ( ( ( ph /\ x e. RR ) /\ ( ( abs ` x ) x. L ) =/= 1 ) -> ( ( abs ` x ) < ( 1 / L ) <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 232 |
69 231
|
syldan |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( abs ` x ) < ( 1 / L ) <-> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 233 |
232
|
notbid |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( -. ( abs ` x ) < ( 1 / L ) <-> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 234 |
58 233
|
bitrd |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) < ( abs ` x ) <-> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 235 |
234
|
biimpd |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( 1 / L ) < ( abs ` x ) -> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 236 |
235
|
impancom |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < ( abs ` x ) ) -> ( ( abs ` x ) =/= ( 1 / L ) -> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 237 |
52 236
|
mpd |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < ( abs ` x ) ) -> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 238 |
237
|
ex |
|- ( ( ph /\ x e. RR ) -> ( ( 1 / L ) < ( abs ` x ) -> -. x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 239 |
238
|
con2d |
|- ( ( ph /\ x e. RR ) -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } -> -. ( 1 / L ) < ( abs ` x ) ) ) |
| 240 |
47
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> ( 1 / L ) e. RR ) |
| 241 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> x e. RR ) |
| 242 |
50
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> ( abs ` x ) e. RR ) |
| 243 |
|
simpr |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> ( 1 / L ) < x ) |
| 244 |
241
|
leabsd |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> x <_ ( abs ` x ) ) |
| 245 |
240 241 242 243 244
|
ltletrd |
|- ( ( ( ph /\ x e. RR ) /\ ( 1 / L ) < x ) -> ( 1 / L ) < ( abs ` x ) ) |
| 246 |
245
|
ex |
|- ( ( ph /\ x e. RR ) -> ( ( 1 / L ) < x -> ( 1 / L ) < ( abs ` x ) ) ) |
| 247 |
239 246
|
nsyld |
|- ( ( ph /\ x e. RR ) -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } -> -. ( 1 / L ) < x ) ) |
| 248 |
46 247
|
sylan2 |
|- ( ( ph /\ x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> ( x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } -> -. ( 1 / L ) < x ) ) |
| 249 |
45 248
|
mpd |
|- ( ( ph /\ x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> -. ( 1 / L ) < x ) |
| 250 |
43
|
renegcld |
|- ( ph -> -u ( 1 / L ) e. RR ) |
| 251 |
250
|
rexrd |
|- ( ph -> -u ( 1 / L ) e. RR* ) |
| 252 |
|
iooss1 |
|- ( ( -u ( 1 / L ) e. RR* /\ -u ( 1 / L ) <_ x ) -> ( x (,) ( 1 / L ) ) C_ ( -u ( 1 / L ) (,) ( 1 / L ) ) ) |
| 253 |
251 252
|
sylan |
|- ( ( ph /\ -u ( 1 / L ) <_ x ) -> ( x (,) ( 1 / L ) ) C_ ( -u ( 1 / L ) (,) ( 1 / L ) ) ) |
| 254 |
253
|
adantlr |
|- ( ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) /\ -u ( 1 / L ) <_ x ) -> ( x (,) ( 1 / L ) ) C_ ( -u ( 1 / L ) (,) ( 1 / L ) ) ) |
| 255 |
|
eliooord |
|- ( k e. ( x (,) ( 1 / L ) ) -> ( x < k /\ k < ( 1 / L ) ) ) |
| 256 |
255
|
simpld |
|- ( k e. ( x (,) ( 1 / L ) ) -> x < k ) |
| 257 |
256
|
rgen |
|- A. k e. ( x (,) ( 1 / L ) ) x < k |
| 258 |
|
ioon0 |
|- ( ( x e. RR* /\ ( 1 / L ) e. RR* ) -> ( ( x (,) ( 1 / L ) ) =/= (/) <-> x < ( 1 / L ) ) ) |
| 259 |
44 258
|
sylan2 |
|- ( ( x e. RR* /\ ph ) -> ( ( x (,) ( 1 / L ) ) =/= (/) <-> x < ( 1 / L ) ) ) |
| 260 |
259
|
ancoms |
|- ( ( ph /\ x e. RR* ) -> ( ( x (,) ( 1 / L ) ) =/= (/) <-> x < ( 1 / L ) ) ) |
| 261 |
260
|
biimpar |
|- ( ( ( ph /\ x e. RR* ) /\ x < ( 1 / L ) ) -> ( x (,) ( 1 / L ) ) =/= (/) ) |
| 262 |
|
r19.2zb |
|- ( ( x (,) ( 1 / L ) ) =/= (/) <-> ( A. k e. ( x (,) ( 1 / L ) ) x < k -> E. k e. ( x (,) ( 1 / L ) ) x < k ) ) |
| 263 |
261 262
|
sylib |
|- ( ( ( ph /\ x e. RR* ) /\ x < ( 1 / L ) ) -> ( A. k e. ( x (,) ( 1 / L ) ) x < k -> E. k e. ( x (,) ( 1 / L ) ) x < k ) ) |
| 264 |
257 263
|
mpi |
|- ( ( ( ph /\ x e. RR* ) /\ x < ( 1 / L ) ) -> E. k e. ( x (,) ( 1 / L ) ) x < k ) |
| 265 |
264
|
anasss |
|- ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) -> E. k e. ( x (,) ( 1 / L ) ) x < k ) |
| 266 |
265
|
adantr |
|- ( ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) /\ -u ( 1 / L ) <_ x ) -> E. k e. ( x (,) ( 1 / L ) ) x < k ) |
| 267 |
|
ssrexv |
|- ( ( x (,) ( 1 / L ) ) C_ ( -u ( 1 / L ) (,) ( 1 / L ) ) -> ( E. k e. ( x (,) ( 1 / L ) ) x < k -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) ) |
| 268 |
254 266 267
|
sylc |
|- ( ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) /\ -u ( 1 / L ) <_ x ) -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) |
| 269 |
|
simplr |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> x e. RR* ) |
| 270 |
|
xrltnle |
|- ( ( x e. RR* /\ -u ( 1 / L ) e. RR* ) -> ( x < -u ( 1 / L ) <-> -. -u ( 1 / L ) <_ x ) ) |
| 271 |
|
xrltle |
|- ( ( x e. RR* /\ -u ( 1 / L ) e. RR* ) -> ( x < -u ( 1 / L ) -> x <_ -u ( 1 / L ) ) ) |
| 272 |
270 271
|
sylbird |
|- ( ( x e. RR* /\ -u ( 1 / L ) e. RR* ) -> ( -. -u ( 1 / L ) <_ x -> x <_ -u ( 1 / L ) ) ) |
| 273 |
251 272
|
sylan2 |
|- ( ( x e. RR* /\ ph ) -> ( -. -u ( 1 / L ) <_ x -> x <_ -u ( 1 / L ) ) ) |
| 274 |
273
|
ancoms |
|- ( ( ph /\ x e. RR* ) -> ( -. -u ( 1 / L ) <_ x -> x <_ -u ( 1 / L ) ) ) |
| 275 |
274
|
imp |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> x <_ -u ( 1 / L ) ) |
| 276 |
|
iooss1 |
|- ( ( x e. RR* /\ x <_ -u ( 1 / L ) ) -> ( -u ( 1 / L ) (,) ( 1 / L ) ) C_ ( x (,) ( 1 / L ) ) ) |
| 277 |
269 275 276
|
syl2anc |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> ( -u ( 1 / L ) (,) ( 1 / L ) ) C_ ( x (,) ( 1 / L ) ) ) |
| 278 |
277
|
sselda |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) /\ k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) ) -> k e. ( x (,) ( 1 / L ) ) ) |
| 279 |
278 256
|
syl |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) /\ k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) ) -> x < k ) |
| 280 |
279
|
ralrimiva |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> A. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) |
| 281 |
42 78
|
recgt0d |
|- ( ph -> 0 < ( 1 / L ) ) |
| 282 |
43 43 281 281
|
addgt0d |
|- ( ph -> 0 < ( ( 1 / L ) + ( 1 / L ) ) ) |
| 283 |
43
|
recnd |
|- ( ph -> ( 1 / L ) e. CC ) |
| 284 |
283 283
|
subnegd |
|- ( ph -> ( ( 1 / L ) - -u ( 1 / L ) ) = ( ( 1 / L ) + ( 1 / L ) ) ) |
| 285 |
282 284
|
breqtrrd |
|- ( ph -> 0 < ( ( 1 / L ) - -u ( 1 / L ) ) ) |
| 286 |
250 43
|
posdifd |
|- ( ph -> ( -u ( 1 / L ) < ( 1 / L ) <-> 0 < ( ( 1 / L ) - -u ( 1 / L ) ) ) ) |
| 287 |
285 286
|
mpbird |
|- ( ph -> -u ( 1 / L ) < ( 1 / L ) ) |
| 288 |
|
ioon0 |
|- ( ( -u ( 1 / L ) e. RR* /\ ( 1 / L ) e. RR* ) -> ( ( -u ( 1 / L ) (,) ( 1 / L ) ) =/= (/) <-> -u ( 1 / L ) < ( 1 / L ) ) ) |
| 289 |
251 44 288
|
syl2anc |
|- ( ph -> ( ( -u ( 1 / L ) (,) ( 1 / L ) ) =/= (/) <-> -u ( 1 / L ) < ( 1 / L ) ) ) |
| 290 |
287 289
|
mpbird |
|- ( ph -> ( -u ( 1 / L ) (,) ( 1 / L ) ) =/= (/) ) |
| 291 |
|
r19.2zb |
|- ( ( -u ( 1 / L ) (,) ( 1 / L ) ) =/= (/) <-> ( A. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) ) |
| 292 |
290 291
|
sylib |
|- ( ph -> ( A. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) ) |
| 293 |
292
|
ad2antrr |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> ( A. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) ) |
| 294 |
280 293
|
mpd |
|- ( ( ( ph /\ x e. RR* ) /\ -. -u ( 1 / L ) <_ x ) -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) |
| 295 |
294
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) /\ -. -u ( 1 / L ) <_ x ) -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) |
| 296 |
268 295
|
pm2.61dan |
|- ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) -> E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k ) |
| 297 |
|
elioo2 |
|- ( ( -u ( 1 / L ) e. RR* /\ ( 1 / L ) e. RR* ) -> ( x e. ( -u ( 1 / L ) (,) ( 1 / L ) ) <-> ( x e. RR /\ -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) ) |
| 298 |
251 44 297
|
syl2anc |
|- ( ph -> ( x e. ( -u ( 1 / L ) (,) ( 1 / L ) ) <-> ( x e. RR /\ -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) ) |
| 299 |
298
|
biimpa |
|- ( ( ph /\ x e. ( -u ( 1 / L ) (,) ( 1 / L ) ) ) -> ( x e. RR /\ -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) |
| 300 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 301 |
300 47
|
absltd |
|- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) < ( 1 / L ) <-> ( -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) ) |
| 302 |
50
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) < ( 1 / L ) ) -> ( abs ` x ) e. RR ) |
| 303 |
|
simpr |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) < ( 1 / L ) ) -> ( abs ` x ) < ( 1 / L ) ) |
| 304 |
302 303
|
ltned |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) < ( 1 / L ) ) -> ( abs ` x ) =/= ( 1 / L ) ) |
| 305 |
232
|
biimpd |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) =/= ( 1 / L ) ) -> ( ( abs ` x ) < ( 1 / L ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 306 |
305
|
impancom |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) < ( 1 / L ) ) -> ( ( abs ` x ) =/= ( 1 / L ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 307 |
304 306
|
mpd |
|- ( ( ( ph /\ x e. RR ) /\ ( abs ` x ) < ( 1 / L ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 308 |
307
|
ex |
|- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) < ( 1 / L ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 309 |
301 308
|
sylbird |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( 1 / L ) < x /\ x < ( 1 / L ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 310 |
309
|
impr |
|- ( ( ph /\ ( x e. RR /\ ( -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 311 |
310
|
expcom |
|- ( ( x e. RR /\ ( -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) -> ( ph -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 312 |
311
|
3impb |
|- ( ( x e. RR /\ -u ( 1 / L ) < x /\ x < ( 1 / L ) ) -> ( ph -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 313 |
312
|
impcom |
|- ( ( ph /\ ( x e. RR /\ -u ( 1 / L ) < x /\ x < ( 1 / L ) ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 314 |
299 313
|
syldan |
|- ( ( ph /\ x e. ( -u ( 1 / L ) (,) ( 1 / L ) ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 315 |
314
|
ex |
|- ( ph -> ( x e. ( -u ( 1 / L ) (,) ( 1 / L ) ) -> x e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) ) |
| 316 |
315
|
ssrdv |
|- ( ph -> ( -u ( 1 / L ) (,) ( 1 / L ) ) C_ { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 317 |
|
ssrexv |
|- ( ( -u ( 1 / L ) (,) ( 1 / L ) ) C_ { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } -> ( E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } x < k ) ) |
| 318 |
316 317
|
syl |
|- ( ph -> ( E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } x < k ) ) |
| 319 |
318
|
adantr |
|- ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) -> ( E. k e. ( -u ( 1 / L ) (,) ( 1 / L ) ) x < k -> E. k e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } x < k ) ) |
| 320 |
296 319
|
mpd |
|- ( ( ph /\ ( x e. RR* /\ x < ( 1 / L ) ) ) -> E. k e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } x < k ) |
| 321 |
11 44 249 320
|
eqsupd |
|- ( ph -> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) = ( 1 / L ) ) |
| 322 |
3 321
|
eqtrid |
|- ( ph -> R = ( 1 / L ) ) |