Description: Ratio test for convergence and divergence of a complex infinite series. If the ratio R of the absolute values of successive terms in an infinite sequence F converges to less than one, then the infinite sum of the terms of F converges to a complex number; and if R convergesgreater then the sum diverges. This combined form of cvgrat and dvgrat directly uses the limit of the ratio.
(It also demonstrates how to use climi2 and absltd to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 , and how to use r19.29a in a similar fashion to Mario Carneiro's proof sketch with rexlimdva at https://groups.google.com/g/metamath/c/2RPikOiXLMo .) (Contributed by Steve Rodriguez, 28-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cvgdvgrat.z | |- Z = ( ZZ>= ` M ) |
|
cvgdvgrat.w | |- W = ( ZZ>= ` N ) |
||
cvgdvgrat.n | |- ( ph -> N e. Z ) |
||
cvgdvgrat.f | |- ( ph -> F e. V ) |
||
cvgdvgrat.c | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
cvgdvgrat.n0 | |- ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) |
||
cvgdvgrat.r | |- R = ( k e. W |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
||
cvgdvgrat.cvg | |- ( ph -> R ~~> L ) |
||
cvgdvgrat.n1 | |- ( ph -> L =/= 1 ) |
||
Assertion | cvgdvgrat | |- ( ph -> ( L < 1 <-> seq M ( + , F ) e. dom ~~> ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvgdvgrat.z | |- Z = ( ZZ>= ` M ) |
|
2 | cvgdvgrat.w | |- W = ( ZZ>= ` N ) |
|
3 | cvgdvgrat.n | |- ( ph -> N e. Z ) |
|
4 | cvgdvgrat.f | |- ( ph -> F e. V ) |
|
5 | cvgdvgrat.c | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
6 | cvgdvgrat.n0 | |- ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) |
|
7 | cvgdvgrat.r | |- R = ( k e. W |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
|
8 | cvgdvgrat.cvg | |- ( ph -> R ~~> L ) |
|
9 | cvgdvgrat.n1 | |- ( ph -> L =/= 1 ) |
|
10 | eqid | |- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
|
11 | elioore | |- ( r e. ( L (,) 1 ) -> r e. RR ) |
|
12 | 11 | ad3antlr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) -> r e. RR ) |
13 | 3 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
14 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
15 | 13 14 | syl | |- ( ph -> N e. ZZ ) |
16 | 7 | a1i | |- ( ph -> R = ( k e. W |-> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) ) |
17 | 2 | peano2uzs | |- ( k e. W -> ( k + 1 ) e. W ) |
18 | ovex | |- ( k + 1 ) e. _V |
|
19 | eleq1 | |- ( i = ( k + 1 ) -> ( i e. W <-> ( k + 1 ) e. W ) ) |
|
20 | 19 | anbi2d | |- ( i = ( k + 1 ) -> ( ( ph /\ i e. W ) <-> ( ph /\ ( k + 1 ) e. W ) ) ) |
21 | fveq2 | |- ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) |
|
22 | 21 | eleq1d | |- ( i = ( k + 1 ) -> ( ( F ` i ) e. CC <-> ( F ` ( k + 1 ) ) e. CC ) ) |
23 | 20 22 | imbi12d | |- ( i = ( k + 1 ) -> ( ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) <-> ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) ) ) |
24 | eleq1 | |- ( k = i -> ( k e. W <-> i e. W ) ) |
|
25 | 24 | anbi2d | |- ( k = i -> ( ( ph /\ k e. W ) <-> ( ph /\ i e. W ) ) ) |
26 | fveq2 | |- ( k = i -> ( F ` k ) = ( F ` i ) ) |
|
27 | 26 | eleq1d | |- ( k = i -> ( ( F ` k ) e. CC <-> ( F ` i ) e. CC ) ) |
28 | 25 27 | imbi12d | |- ( k = i -> ( ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) ) ) |
29 | 2 | eleq2i | |- ( k e. W <-> k e. ( ZZ>= ` N ) ) |
30 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
31 | 3 30 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
32 | 29 31 | sylan2b | |- ( ( ph /\ k e. W ) -> k e. Z ) |
33 | 32 5 | syldan | |- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
34 | 28 33 | chvarvv | |- ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) |
35 | 18 23 34 | vtocl | |- ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
36 | 17 35 | sylan2 | |- ( ( ph /\ k e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
37 | 36 33 6 | divcld | |- ( ( ph /\ k e. W ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) e. CC ) |
38 | 37 | abscld | |- ( ( ph /\ k e. W ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) e. RR ) |
39 | 16 38 | fvmpt2d | |- ( ( ph /\ k e. W ) -> ( R ` k ) = ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
40 | 39 38 | eqeltrd | |- ( ( ph /\ k e. W ) -> ( R ` k ) e. RR ) |
41 | 2 15 8 40 | climrecl | |- ( ph -> L e. RR ) |
42 | 41 | rexrd | |- ( ph -> L e. RR* ) |
43 | 1xr | |- 1 e. RR* |
|
44 | elioo2 | |- ( ( L e. RR* /\ 1 e. RR* ) -> ( r e. ( L (,) 1 ) <-> ( r e. RR /\ L < r /\ r < 1 ) ) ) |
|
45 | 42 43 44 | sylancl | |- ( ph -> ( r e. ( L (,) 1 ) <-> ( r e. RR /\ L < r /\ r < 1 ) ) ) |
46 | 45 | biimpa | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> ( r e. RR /\ L < r /\ r < 1 ) ) |
47 | 46 | simp3d | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> r < 1 ) |
48 | 47 | ad2antrr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) -> r < 1 ) |
49 | simplr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) -> n e. W ) |
|
50 | 34 | ex | |- ( ph -> ( i e. W -> ( F ` i ) e. CC ) ) |
51 | 50 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) -> ( i e. W -> ( F ` i ) e. CC ) ) |
52 | 51 | imp | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) /\ i e. W ) -> ( F ` i ) e. CC ) |
53 | fvoveq1 | |- ( k = i -> ( F ` ( k + 1 ) ) = ( F ` ( i + 1 ) ) ) |
|
54 | 53 | fveq2d | |- ( k = i -> ( abs ` ( F ` ( k + 1 ) ) ) = ( abs ` ( F ` ( i + 1 ) ) ) ) |
55 | 26 | fveq2d | |- ( k = i -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` i ) ) ) |
56 | 55 | oveq2d | |- ( k = i -> ( r x. ( abs ` ( F ` k ) ) ) = ( r x. ( abs ` ( F ` i ) ) ) ) |
57 | 54 56 | breq12d | |- ( k = i -> ( ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) <-> ( abs ` ( F ` ( i + 1 ) ) ) <_ ( r x. ( abs ` ( F ` i ) ) ) ) ) |
58 | 57 | rspccva | |- ( ( A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` ( i + 1 ) ) ) <_ ( r x. ( abs ` ( F ` i ) ) ) ) |
59 | 58 | adantll | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` ( i + 1 ) ) ) <_ ( r x. ( abs ` ( F ` i ) ) ) ) |
60 | 2 10 12 48 49 52 59 | cvgrat | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) -> seq N ( + , F ) e. dom ~~> ) |
61 | 15 | adantr | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> N e. ZZ ) |
62 | 46 | simp2d | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> L < r ) |
63 | difrp | |- ( ( L e. RR /\ r e. RR ) -> ( L < r <-> ( r - L ) e. RR+ ) ) |
|
64 | 41 11 63 | syl2an | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> ( L < r <-> ( r - L ) e. RR+ ) ) |
65 | 62 64 | mpbid | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> ( r - L ) e. RR+ ) |
66 | 39 | adantlr | |- ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ k e. W ) -> ( R ` k ) = ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
67 | 8 | adantr | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> R ~~> L ) |
68 | 2 61 65 66 67 | climi2 | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) |
69 | 2 | uztrn2 | |- ( ( n e. W /\ k e. ( ZZ>= ` n ) ) -> k e. W ) |
70 | 69 36 | sylan2 | |- ( ( ph /\ ( n e. W /\ k e. ( ZZ>= ` n ) ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
71 | 70 | anassrs | |- ( ( ( ph /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
72 | 71 | adantllr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
73 | 72 | adantr | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
74 | 73 | abscld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) e. RR ) |
75 | 11 | ad4antlr | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> r e. RR ) |
76 | 69 33 | sylan2 | |- ( ( ph /\ ( n e. W /\ k e. ( ZZ>= ` n ) ) ) -> ( F ` k ) e. CC ) |
77 | 76 | anassrs | |- ( ( ( ph /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. CC ) |
78 | 77 | adantllr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. CC ) |
79 | 78 | adantr | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( F ` k ) e. CC ) |
80 | 79 | abscld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
81 | 75 80 | remulcld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( r x. ( abs ` ( F ` k ) ) ) e. RR ) |
82 | 69 6 | sylan2 | |- ( ( ph /\ ( n e. W /\ k e. ( ZZ>= ` n ) ) ) -> ( F ` k ) =/= 0 ) |
83 | 82 | anassrs | |- ( ( ( ph /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) =/= 0 ) |
84 | 83 | adantllr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) =/= 0 ) |
85 | 84 | adantr | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( F ` k ) =/= 0 ) |
86 | 73 79 85 | absdivd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) = ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) ) |
87 | 72 78 84 | divcld | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) e. CC ) |
88 | 87 | abscld | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) e. RR ) |
89 | 41 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> L e. RR ) |
90 | 88 89 | resubcld | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) e. RR ) |
91 | 11 | ad3antlr | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR ) |
92 | 91 89 | resubcld | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( r - L ) e. RR ) |
93 | 90 92 | absltd | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) <-> ( -u ( r - L ) < ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) /\ ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) < ( r - L ) ) ) ) |
94 | 93 | simplbda | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) < ( r - L ) ) |
95 | 73 79 85 | divcld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) e. CC ) |
96 | 95 | abscld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) e. RR ) |
97 | 41 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> L e. RR ) |
98 | 96 75 97 | ltsub1d | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) < r <-> ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) < ( r - L ) ) ) |
99 | 94 98 | mpbird | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) < r ) |
100 | 86 99 | eqbrtrrd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) < r ) |
101 | 79 85 | absrpcld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` k ) ) e. RR+ ) |
102 | 74 75 101 | ltdivmuld | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) < r <-> ( abs ` ( F ` ( k + 1 ) ) ) < ( ( abs ` ( F ` k ) ) x. r ) ) ) |
103 | 100 102 | mpbid | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) < ( ( abs ` ( F ` k ) ) x. r ) ) |
104 | 101 | rpcnd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
105 | 75 | recnd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> r e. CC ) |
106 | 104 105 | mulcomd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( ( abs ` ( F ` k ) ) x. r ) = ( r x. ( abs ` ( F ` k ) ) ) ) |
107 | 103 106 | breqtrd | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) < ( r x. ( abs ` ( F ` k ) ) ) ) |
108 | 74 81 107 | ltled | |- ( ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) |
109 | 108 | ex | |- ( ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) -> ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) ) |
110 | 109 | ralimdva | |- ( ( ( ph /\ r e. ( L (,) 1 ) ) /\ n e. W ) -> ( A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) -> A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) ) |
111 | 110 | reximdva | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> ( E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( r - L ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) ) |
112 | 68 111 | mpd | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( F ` ( k + 1 ) ) ) <_ ( r x. ( abs ` ( F ` k ) ) ) ) |
113 | 60 112 | r19.29a | |- ( ( ph /\ r e. ( L (,) 1 ) ) -> seq N ( + , F ) e. dom ~~> ) |
114 | 113 | ralrimiva | |- ( ph -> A. r e. ( L (,) 1 ) seq N ( + , F ) e. dom ~~> ) |
115 | 114 | adantr | |- ( ( ph /\ L < 1 ) -> A. r e. ( L (,) 1 ) seq N ( + , F ) e. dom ~~> ) |
116 | ioon0 | |- ( ( L e. RR* /\ 1 e. RR* ) -> ( ( L (,) 1 ) =/= (/) <-> L < 1 ) ) |
|
117 | 42 43 116 | sylancl | |- ( ph -> ( ( L (,) 1 ) =/= (/) <-> L < 1 ) ) |
118 | 117 | biimpar | |- ( ( ph /\ L < 1 ) -> ( L (,) 1 ) =/= (/) ) |
119 | r19.3rzv | |- ( ( L (,) 1 ) =/= (/) -> ( seq N ( + , F ) e. dom ~~> <-> A. r e. ( L (,) 1 ) seq N ( + , F ) e. dom ~~> ) ) |
|
120 | 118 119 | syl | |- ( ( ph /\ L < 1 ) -> ( seq N ( + , F ) e. dom ~~> <-> A. r e. ( L (,) 1 ) seq N ( + , F ) e. dom ~~> ) ) |
121 | 115 120 | mpbird | |- ( ( ph /\ L < 1 ) -> seq N ( + , F ) e. dom ~~> ) |
122 | 1 3 5 | iserex | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
123 | 122 | adantr | |- ( ( ph /\ L < 1 ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
124 | 121 123 | mpbird | |- ( ( ph /\ L < 1 ) -> seq M ( + , F ) e. dom ~~> ) |
125 | 124 | ex | |- ( ph -> ( L < 1 -> seq M ( + , F ) e. dom ~~> ) ) |
126 | 1red | |- ( ph -> 1 e. RR ) |
|
127 | 41 126 | lttri2d | |- ( ph -> ( L =/= 1 <-> ( L < 1 \/ 1 < L ) ) ) |
128 | 9 127 | mpbid | |- ( ph -> ( L < 1 \/ 1 < L ) ) |
129 | 128 | orcanai | |- ( ( ph /\ -. L < 1 ) -> 1 < L ) |
130 | simplr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) -> n e. W ) |
|
131 | 4 | ad3antrrr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) -> F e. V ) |
132 | 50 | ad3antrrr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) -> ( i e. W -> ( F ` i ) e. CC ) ) |
133 | 132 | imp | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) /\ i e. W ) -> ( F ` i ) e. CC ) |
134 | 2 | uztrn2 | |- ( ( n e. W /\ i e. ( ZZ>= ` n ) ) -> i e. W ) |
135 | 26 | neeq1d | |- ( k = i -> ( ( F ` k ) =/= 0 <-> ( F ` i ) =/= 0 ) ) |
136 | 25 135 | imbi12d | |- ( k = i -> ( ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) <-> ( ( ph /\ i e. W ) -> ( F ` i ) =/= 0 ) ) ) |
137 | 136 6 | chvarvv | |- ( ( ph /\ i e. W ) -> ( F ` i ) =/= 0 ) |
138 | 134 137 | sylan2 | |- ( ( ph /\ ( n e. W /\ i e. ( ZZ>= ` n ) ) ) -> ( F ` i ) =/= 0 ) |
139 | 138 | anassrs | |- ( ( ( ph /\ n e. W ) /\ i e. ( ZZ>= ` n ) ) -> ( F ` i ) =/= 0 ) |
140 | 139 | adantllr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ i e. ( ZZ>= ` n ) ) -> ( F ` i ) =/= 0 ) |
141 | 140 | adantlr | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) /\ i e. ( ZZ>= ` n ) ) -> ( F ` i ) =/= 0 ) |
142 | 55 54 | breq12d | |- ( k = i -> ( ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) <-> ( abs ` ( F ` i ) ) <_ ( abs ` ( F ` ( i + 1 ) ) ) ) ) |
143 | 142 | rspccva | |- ( ( A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` i ) ) <_ ( abs ` ( F ` ( i + 1 ) ) ) ) |
144 | 143 | adantll | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` i ) ) <_ ( abs ` ( F ` ( i + 1 ) ) ) ) |
145 | 2 10 130 131 133 141 144 | dvgrat | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) -> seq N ( + , F ) e/ dom ~~> ) |
146 | 15 | adantr | |- ( ( ph /\ 1 < L ) -> N e. ZZ ) |
147 | 1re | |- 1 e. RR |
|
148 | difrp | |- ( ( 1 e. RR /\ L e. RR ) -> ( 1 < L <-> ( L - 1 ) e. RR+ ) ) |
|
149 | 147 41 148 | sylancr | |- ( ph -> ( 1 < L <-> ( L - 1 ) e. RR+ ) ) |
150 | 149 | biimpa | |- ( ( ph /\ 1 < L ) -> ( L - 1 ) e. RR+ ) |
151 | 39 | adantlr | |- ( ( ( ph /\ 1 < L ) /\ k e. W ) -> ( R ` k ) = ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
152 | 8 | adantr | |- ( ( ph /\ 1 < L ) -> R ~~> L ) |
153 | 2 146 150 151 152 | climi2 | |- ( ( ph /\ 1 < L ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) |
154 | 77 | adantllr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. CC ) |
155 | 154 | adantr | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( F ` k ) e. CC ) |
156 | 155 | abscld | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
157 | 71 | adantllr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
158 | 157 | adantr | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
159 | 158 | abscld | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) e. RR ) |
160 | 83 | adantllr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) =/= 0 ) |
161 | 160 | adantr | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( F ` k ) =/= 0 ) |
162 | 155 161 | absrpcld | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` k ) ) e. RR+ ) |
163 | 162 | rpcnd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
164 | 163 | mullidd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( 1 x. ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) |
165 | 41 | ad4antr | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> L e. RR ) |
166 | 165 | recnd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> L e. CC ) |
167 | 1cnd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> 1 e. CC ) |
|
168 | 166 167 | negsubdi2d | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> -u ( L - 1 ) = ( 1 - L ) ) |
169 | 157 154 160 | divcld | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) e. CC ) |
170 | 169 | abscld | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) e. RR ) |
171 | 41 | ad3antrrr | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> L e. RR ) |
172 | 170 171 | resubcld | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) e. RR ) |
173 | 1red | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> 1 e. RR ) |
|
174 | 171 173 | resubcld | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( L - 1 ) e. RR ) |
175 | 172 174 | absltd | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) <-> ( -u ( L - 1 ) < ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) /\ ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) < ( L - 1 ) ) ) ) |
176 | 175 | simprbda | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> -u ( L - 1 ) < ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) |
177 | 168 176 | eqbrtrrd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( 1 - L ) < ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) |
178 | 1red | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> 1 e. RR ) |
|
179 | 158 155 161 | divcld | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( ( F ` ( k + 1 ) ) / ( F ` k ) ) e. CC ) |
180 | 179 | abscld | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) e. RR ) |
181 | 178 180 165 | ltsub1d | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( 1 < ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) <-> ( 1 - L ) < ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) ) |
182 | 177 181 | mpbird | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> 1 < ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) ) |
183 | 158 155 161 | absdivd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) = ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) ) |
184 | 182 183 | breqtrd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> 1 < ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) ) |
185 | 178 159 162 | ltmuldivd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( ( 1 x. ( abs ` ( F ` k ) ) ) < ( abs ` ( F ` ( k + 1 ) ) ) <-> 1 < ( ( abs ` ( F ` ( k + 1 ) ) ) / ( abs ` ( F ` k ) ) ) ) ) |
186 | 184 185 | mpbird | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( 1 x. ( abs ` ( F ` k ) ) ) < ( abs ` ( F ` ( k + 1 ) ) ) ) |
187 | 164 186 | eqbrtrrd | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` k ) ) < ( abs ` ( F ` ( k + 1 ) ) ) ) |
188 | 156 159 187 | ltled | |- ( ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) /\ ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
189 | 188 | ex | |- ( ( ( ( ph /\ 1 < L ) /\ n e. W ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
190 | 189 | ralimdva | |- ( ( ( ph /\ 1 < L ) /\ n e. W ) -> ( A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) -> A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
191 | 190 | reximdva | |- ( ( ph /\ 1 < L ) -> ( E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( ( abs ` ( ( F ` ( k + 1 ) ) / ( F ` k ) ) ) - L ) ) < ( L - 1 ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
192 | 153 191 | mpd | |- ( ( ph /\ 1 < L ) -> E. n e. W A. k e. ( ZZ>= ` n ) ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
193 | 145 192 | r19.29a | |- ( ( ph /\ 1 < L ) -> seq N ( + , F ) e/ dom ~~> ) |
194 | df-nel | |- ( seq N ( + , F ) e/ dom ~~> <-> -. seq N ( + , F ) e. dom ~~> ) |
|
195 | 193 194 | sylib | |- ( ( ph /\ 1 < L ) -> -. seq N ( + , F ) e. dom ~~> ) |
196 | 122 | adantr | |- ( ( ph /\ 1 < L ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
197 | 195 196 | mtbird | |- ( ( ph /\ 1 < L ) -> -. seq M ( + , F ) e. dom ~~> ) |
198 | 129 197 | syldan | |- ( ( ph /\ -. L < 1 ) -> -. seq M ( + , F ) e. dom ~~> ) |
199 | 198 | ex | |- ( ph -> ( -. L < 1 -> -. seq M ( + , F ) e. dom ~~> ) ) |
200 | 125 199 | impcon4bid | |- ( ph -> ( L < 1 <-> seq M ( + , F ) e. dom ~~> ) ) |