| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgrat.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
dvgrat.w |
|- W = ( ZZ>= ` N ) |
| 3 |
|
dvgrat.n |
|- ( ph -> N e. Z ) |
| 4 |
|
dvgrat.f |
|- ( ph -> F e. V ) |
| 5 |
|
dvgrat.c |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 6 |
|
dvgrat.n0 |
|- ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) |
| 7 |
|
dvgrat.le |
|- ( ( ph /\ k e. W ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
| 8 |
3 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 9 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( ph -> N e. ZZ ) |
| 11 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
| 12 |
11 2
|
eleqtrrdi |
|- ( N e. ZZ -> N e. W ) |
| 13 |
10 12
|
syl |
|- ( ph -> N e. W ) |
| 14 |
|
simpr |
|- ( ( ph /\ k = N ) -> k = N ) |
| 15 |
14
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( k e. W <-> N e. W ) ) |
| 16 |
14
|
fveq2d |
|- ( ( ph /\ k = N ) -> ( F ` k ) = ( F ` N ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ph /\ k = N ) -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` N ) ) ) |
| 18 |
17
|
breq2d |
|- ( ( ph /\ k = N ) -> ( 0 < ( abs ` ( F ` k ) ) <-> 0 < ( abs ` ( F ` N ) ) ) ) |
| 19 |
15 18
|
imbi12d |
|- ( ( ph /\ k = N ) -> ( ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) <-> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) ) |
| 20 |
2
|
eleq2i |
|- ( k e. W <-> k e. ( ZZ>= ` N ) ) |
| 21 |
1
|
uztrn2 |
|- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 22 |
20 21
|
sylan2b |
|- ( ( N e. Z /\ k e. W ) -> k e. Z ) |
| 23 |
3 22
|
sylan |
|- ( ( ph /\ k e. W ) -> k e. Z ) |
| 24 |
23 5
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
| 25 |
|
absgt0 |
|- ( ( F ` k ) e. CC -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ k e. W ) -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) |
| 27 |
6 26
|
mpbid |
|- ( ( ph /\ k e. W ) -> 0 < ( abs ` ( F ` k ) ) ) |
| 28 |
27
|
ex |
|- ( ph -> ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) ) |
| 29 |
3 19 28
|
vtocld |
|- ( ph -> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) |
| 30 |
13 29
|
mpd |
|- ( ph -> 0 < ( abs ` ( F ` N ) ) ) |
| 31 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 32 |
14
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( k e. Z <-> N e. Z ) ) |
| 33 |
16
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( ( F ` k ) e. CC <-> ( F ` N ) e. CC ) ) |
| 34 |
32 33
|
imbi12d |
|- ( ( ph /\ k = N ) -> ( ( k e. Z -> ( F ` k ) e. CC ) <-> ( N e. Z -> ( F ` N ) e. CC ) ) ) |
| 35 |
5
|
ex |
|- ( ph -> ( k e. Z -> ( F ` k ) e. CC ) ) |
| 36 |
3 34 35
|
vtocld |
|- ( ph -> ( N e. Z -> ( F ` N ) e. CC ) ) |
| 37 |
3 36
|
mpd |
|- ( ph -> ( F ` N ) e. CC ) |
| 38 |
37
|
abscld |
|- ( ph -> ( abs ` ( F ` N ) ) e. RR ) |
| 39 |
31 38
|
ltnled |
|- ( ph -> ( 0 < ( abs ` ( F ` N ) ) <-> -. ( abs ` ( F ` N ) ) <_ 0 ) ) |
| 40 |
30 39
|
mpbid |
|- ( ph -> -. ( abs ` ( F ` N ) ) <_ 0 ) |
| 41 |
10
|
adantr |
|- ( ( ph /\ F ~~> 0 ) -> N e. ZZ ) |
| 42 |
38
|
adantr |
|- ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) e. RR ) |
| 43 |
|
simpr |
|- ( ( ph /\ F ~~> 0 ) -> F ~~> 0 ) |
| 44 |
2
|
fvexi |
|- W e. _V |
| 45 |
44
|
mptex |
|- ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V |
| 46 |
45
|
a1i |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V ) |
| 47 |
24
|
adantlr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( F ` k ) e. CC ) |
| 48 |
|
eqidd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) = ( i e. W |-> ( abs ` ( F ` i ) ) ) ) |
| 49 |
|
simpr |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> i = k ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( F ` i ) = ( F ` k ) ) |
| 51 |
50
|
fveq2d |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) |
| 52 |
|
simpr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> k e. W ) |
| 53 |
|
fvex |
|- ( abs ` ( F ` k ) ) e. _V |
| 54 |
53
|
a1i |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. _V ) |
| 55 |
48 51 52 54
|
fvmptd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
| 56 |
2 43 46 41 47 55
|
climabs |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> ( abs ` 0 ) ) |
| 57 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 58 |
56 57
|
breqtrdi |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> 0 ) |
| 59 |
47
|
abscld |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 60 |
55 59
|
eqeltrd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) e. RR ) |
| 61 |
|
2fveq3 |
|- ( i = N -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` N ) ) ) |
| 62 |
61
|
breq2d |
|- ( i = N -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) |
| 63 |
62
|
imbi2d |
|- ( i = N -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) ) |
| 64 |
|
2fveq3 |
|- ( i = k -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) |
| 65 |
64
|
breq2d |
|- ( i = k -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) |
| 66 |
65
|
imbi2d |
|- ( i = k -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) ) |
| 67 |
|
2fveq3 |
|- ( i = ( k + 1 ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` ( k + 1 ) ) ) ) |
| 68 |
67
|
breq2d |
|- ( i = ( k + 1 ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
| 69 |
68
|
imbi2d |
|- ( i = ( k + 1 ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
| 70 |
38
|
adantr |
|- ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) e. RR ) |
| 71 |
70
|
leidd |
|- ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) |
| 72 |
71
|
expcom |
|- ( N e. ZZ -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) |
| 73 |
38
|
ad2antrr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) e. RR ) |
| 74 |
24
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` k ) e. CC ) |
| 75 |
74
|
abscld |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 76 |
2
|
peano2uzs |
|- ( k e. W -> ( k + 1 ) e. W ) |
| 77 |
|
ovex |
|- ( k + 1 ) e. _V |
| 78 |
|
eleq1 |
|- ( i = ( k + 1 ) -> ( i e. W <-> ( k + 1 ) e. W ) ) |
| 79 |
78
|
anbi2d |
|- ( i = ( k + 1 ) -> ( ( ph /\ i e. W ) <-> ( ph /\ ( k + 1 ) e. W ) ) ) |
| 80 |
|
fveq2 |
|- ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) |
| 81 |
80
|
eleq1d |
|- ( i = ( k + 1 ) -> ( ( F ` i ) e. CC <-> ( F ` ( k + 1 ) ) e. CC ) ) |
| 82 |
79 81
|
imbi12d |
|- ( i = ( k + 1 ) -> ( ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) <-> ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) ) ) |
| 83 |
|
eleq1 |
|- ( k = i -> ( k e. W <-> i e. W ) ) |
| 84 |
83
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. W ) <-> ( ph /\ i e. W ) ) ) |
| 85 |
|
fveq2 |
|- ( k = i -> ( F ` k ) = ( F ` i ) ) |
| 86 |
85
|
eleq1d |
|- ( k = i -> ( ( F ` k ) e. CC <-> ( F ` i ) e. CC ) ) |
| 87 |
84 86
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) ) ) |
| 88 |
87 24
|
chvarvv |
|- ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) |
| 89 |
77 82 88
|
vtocl |
|- ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
| 90 |
76 89
|
sylan2 |
|- ( ( ph /\ k e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
| 91 |
90
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
| 92 |
91
|
abscld |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) e. RR ) |
| 93 |
|
simpr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
| 94 |
7
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
| 95 |
73 75 92 93 94
|
letrd |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
| 96 |
95
|
ex |
|- ( ( ph /\ k e. W ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
| 97 |
20 96
|
sylan2br |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
| 98 |
97
|
expcom |
|- ( k e. ( ZZ>= ` N ) -> ( ph -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
| 99 |
98
|
a2d |
|- ( k e. ( ZZ>= ` N ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
| 100 |
63 66 69 66 72 99
|
uzind4 |
|- ( k e. ( ZZ>= ` N ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) |
| 101 |
100
|
impcom |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
| 102 |
20 101
|
sylan2b |
|- ( ( ph /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
| 103 |
102
|
adantlr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
| 104 |
103 55
|
breqtrrd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) ) |
| 105 |
2 41 42 58 60 104
|
climlec2 |
|- ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) <_ 0 ) |
| 106 |
40 105
|
mtand |
|- ( ph -> -. F ~~> 0 ) |
| 107 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 108 |
8 107
|
syl |
|- ( ph -> M e. ZZ ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> M e. ZZ ) |
| 110 |
4
|
adantr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F e. V ) |
| 111 |
|
simpr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
| 112 |
5
|
adantlr |
|- ( ( ( ph /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 113 |
1 109 110 111 112
|
serf0 |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F ~~> 0 ) |
| 114 |
106 113
|
mtand |
|- ( ph -> -. seq M ( + , F ) e. dom ~~> ) |
| 115 |
|
df-nel |
|- ( seq M ( + , F ) e/ dom ~~> <-> -. seq M ( + , F ) e. dom ~~> ) |
| 116 |
114 115
|
sylibr |
|- ( ph -> seq M ( + , F ) e/ dom ~~> ) |