Step |
Hyp |
Ref |
Expression |
1 |
|
dvgrat.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
dvgrat.w |
|- W = ( ZZ>= ` N ) |
3 |
|
dvgrat.n |
|- ( ph -> N e. Z ) |
4 |
|
dvgrat.f |
|- ( ph -> F e. V ) |
5 |
|
dvgrat.c |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
6 |
|
dvgrat.n0 |
|- ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) |
7 |
|
dvgrat.le |
|- ( ( ph /\ k e. W ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
8 |
3 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
9 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
10 |
8 9
|
syl |
|- ( ph -> N e. ZZ ) |
11 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
12 |
11 2
|
eleqtrrdi |
|- ( N e. ZZ -> N e. W ) |
13 |
10 12
|
syl |
|- ( ph -> N e. W ) |
14 |
|
simpr |
|- ( ( ph /\ k = N ) -> k = N ) |
15 |
14
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( k e. W <-> N e. W ) ) |
16 |
14
|
fveq2d |
|- ( ( ph /\ k = N ) -> ( F ` k ) = ( F ` N ) ) |
17 |
16
|
fveq2d |
|- ( ( ph /\ k = N ) -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` N ) ) ) |
18 |
17
|
breq2d |
|- ( ( ph /\ k = N ) -> ( 0 < ( abs ` ( F ` k ) ) <-> 0 < ( abs ` ( F ` N ) ) ) ) |
19 |
15 18
|
imbi12d |
|- ( ( ph /\ k = N ) -> ( ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) <-> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) ) |
20 |
2
|
eleq2i |
|- ( k e. W <-> k e. ( ZZ>= ` N ) ) |
21 |
1
|
uztrn2 |
|- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
22 |
20 21
|
sylan2b |
|- ( ( N e. Z /\ k e. W ) -> k e. Z ) |
23 |
3 22
|
sylan |
|- ( ( ph /\ k e. W ) -> k e. Z ) |
24 |
23 5
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
25 |
|
absgt0 |
|- ( ( F ` k ) e. CC -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) |
26 |
24 25
|
syl |
|- ( ( ph /\ k e. W ) -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) |
27 |
6 26
|
mpbid |
|- ( ( ph /\ k e. W ) -> 0 < ( abs ` ( F ` k ) ) ) |
28 |
27
|
ex |
|- ( ph -> ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) ) |
29 |
3 19 28
|
vtocld |
|- ( ph -> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) |
30 |
13 29
|
mpd |
|- ( ph -> 0 < ( abs ` ( F ` N ) ) ) |
31 |
|
0red |
|- ( ph -> 0 e. RR ) |
32 |
14
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( k e. Z <-> N e. Z ) ) |
33 |
16
|
eleq1d |
|- ( ( ph /\ k = N ) -> ( ( F ` k ) e. CC <-> ( F ` N ) e. CC ) ) |
34 |
32 33
|
imbi12d |
|- ( ( ph /\ k = N ) -> ( ( k e. Z -> ( F ` k ) e. CC ) <-> ( N e. Z -> ( F ` N ) e. CC ) ) ) |
35 |
5
|
ex |
|- ( ph -> ( k e. Z -> ( F ` k ) e. CC ) ) |
36 |
3 34 35
|
vtocld |
|- ( ph -> ( N e. Z -> ( F ` N ) e. CC ) ) |
37 |
3 36
|
mpd |
|- ( ph -> ( F ` N ) e. CC ) |
38 |
37
|
abscld |
|- ( ph -> ( abs ` ( F ` N ) ) e. RR ) |
39 |
31 38
|
ltnled |
|- ( ph -> ( 0 < ( abs ` ( F ` N ) ) <-> -. ( abs ` ( F ` N ) ) <_ 0 ) ) |
40 |
30 39
|
mpbid |
|- ( ph -> -. ( abs ` ( F ` N ) ) <_ 0 ) |
41 |
10
|
adantr |
|- ( ( ph /\ F ~~> 0 ) -> N e. ZZ ) |
42 |
38
|
adantr |
|- ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) e. RR ) |
43 |
|
simpr |
|- ( ( ph /\ F ~~> 0 ) -> F ~~> 0 ) |
44 |
2
|
fvexi |
|- W e. _V |
45 |
44
|
mptex |
|- ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V |
46 |
45
|
a1i |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V ) |
47 |
24
|
adantlr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( F ` k ) e. CC ) |
48 |
|
eqidd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) = ( i e. W |-> ( abs ` ( F ` i ) ) ) ) |
49 |
|
simpr |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> i = k ) |
50 |
49
|
fveq2d |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( F ` i ) = ( F ` k ) ) |
51 |
50
|
fveq2d |
|- ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) |
52 |
|
simpr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> k e. W ) |
53 |
|
fvex |
|- ( abs ` ( F ` k ) ) e. _V |
54 |
53
|
a1i |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. _V ) |
55 |
48 51 52 54
|
fvmptd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
56 |
2 43 46 41 47 55
|
climabs |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> ( abs ` 0 ) ) |
57 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
58 |
56 57
|
breqtrdi |
|- ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> 0 ) |
59 |
47
|
abscld |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. RR ) |
60 |
55 59
|
eqeltrd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) e. RR ) |
61 |
|
2fveq3 |
|- ( i = N -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` N ) ) ) |
62 |
61
|
breq2d |
|- ( i = N -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) |
63 |
62
|
imbi2d |
|- ( i = N -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) ) |
64 |
|
2fveq3 |
|- ( i = k -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) |
65 |
64
|
breq2d |
|- ( i = k -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) |
66 |
65
|
imbi2d |
|- ( i = k -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) ) |
67 |
|
2fveq3 |
|- ( i = ( k + 1 ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` ( k + 1 ) ) ) ) |
68 |
67
|
breq2d |
|- ( i = ( k + 1 ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
69 |
68
|
imbi2d |
|- ( i = ( k + 1 ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
70 |
38
|
adantr |
|- ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) e. RR ) |
71 |
70
|
leidd |
|- ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) |
72 |
71
|
expcom |
|- ( N e. ZZ -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) |
73 |
38
|
ad2antrr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) e. RR ) |
74 |
24
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` k ) e. CC ) |
75 |
74
|
abscld |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
76 |
2
|
peano2uzs |
|- ( k e. W -> ( k + 1 ) e. W ) |
77 |
|
ovex |
|- ( k + 1 ) e. _V |
78 |
|
eleq1 |
|- ( i = ( k + 1 ) -> ( i e. W <-> ( k + 1 ) e. W ) ) |
79 |
78
|
anbi2d |
|- ( i = ( k + 1 ) -> ( ( ph /\ i e. W ) <-> ( ph /\ ( k + 1 ) e. W ) ) ) |
80 |
|
fveq2 |
|- ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) |
81 |
80
|
eleq1d |
|- ( i = ( k + 1 ) -> ( ( F ` i ) e. CC <-> ( F ` ( k + 1 ) ) e. CC ) ) |
82 |
79 81
|
imbi12d |
|- ( i = ( k + 1 ) -> ( ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) <-> ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) ) ) |
83 |
|
eleq1 |
|- ( k = i -> ( k e. W <-> i e. W ) ) |
84 |
83
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. W ) <-> ( ph /\ i e. W ) ) ) |
85 |
|
fveq2 |
|- ( k = i -> ( F ` k ) = ( F ` i ) ) |
86 |
85
|
eleq1d |
|- ( k = i -> ( ( F ` k ) e. CC <-> ( F ` i ) e. CC ) ) |
87 |
84 86
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) ) ) |
88 |
87 24
|
chvarvv |
|- ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) |
89 |
77 82 88
|
vtocl |
|- ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
90 |
76 89
|
sylan2 |
|- ( ( ph /\ k e. W ) -> ( F ` ( k + 1 ) ) e. CC ) |
91 |
90
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` ( k + 1 ) ) e. CC ) |
92 |
91
|
abscld |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) e. RR ) |
93 |
|
simpr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
94 |
7
|
adantr |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
95 |
73 75 92 93 94
|
letrd |
|- ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) |
96 |
95
|
ex |
|- ( ( ph /\ k e. W ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
97 |
20 96
|
sylan2br |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) |
98 |
97
|
expcom |
|- ( k e. ( ZZ>= ` N ) -> ( ph -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
99 |
98
|
a2d |
|- ( k e. ( ZZ>= ` N ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) |
100 |
63 66 69 66 72 99
|
uzind4 |
|- ( k e. ( ZZ>= ` N ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) |
101 |
100
|
impcom |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
102 |
20 101
|
sylan2b |
|- ( ( ph /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
103 |
102
|
adantlr |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) |
104 |
103 55
|
breqtrrd |
|- ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) ) |
105 |
2 41 42 58 60 104
|
climlec2 |
|- ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) <_ 0 ) |
106 |
40 105
|
mtand |
|- ( ph -> -. F ~~> 0 ) |
107 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
108 |
8 107
|
syl |
|- ( ph -> M e. ZZ ) |
109 |
108
|
adantr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> M e. ZZ ) |
110 |
4
|
adantr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F e. V ) |
111 |
|
simpr |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
112 |
5
|
adantlr |
|- ( ( ( ph /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
113 |
1 109 110 111 112
|
serf0 |
|- ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F ~~> 0 ) |
114 |
106 113
|
mtand |
|- ( ph -> -. seq M ( + , F ) e. dom ~~> ) |
115 |
|
df-nel |
|- ( seq M ( + , F ) e/ dom ~~> <-> -. seq M ( + , F ) e. dom ~~> ) |
116 |
114 115
|
sylibr |
|- ( ph -> seq M ( + , F ) e/ dom ~~> ) |