| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvgrat.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | dvgrat.w |  |-  W = ( ZZ>= ` N ) | 
						
							| 3 |  | dvgrat.n |  |-  ( ph -> N e. Z ) | 
						
							| 4 |  | dvgrat.f |  |-  ( ph -> F e. V ) | 
						
							| 5 |  | dvgrat.c |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 6 |  | dvgrat.n0 |  |-  ( ( ph /\ k e. W ) -> ( F ` k ) =/= 0 ) | 
						
							| 7 |  | dvgrat.le |  |-  ( ( ph /\ k e. W ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 8 | 3 1 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 9 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 11 |  | uzid |  |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) ) | 
						
							| 12 | 11 2 | eleqtrrdi |  |-  ( N e. ZZ -> N e. W ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> N e. W ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ k = N ) -> k = N ) | 
						
							| 15 | 14 | eleq1d |  |-  ( ( ph /\ k = N ) -> ( k e. W <-> N e. W ) ) | 
						
							| 16 | 14 | fveq2d |  |-  ( ( ph /\ k = N ) -> ( F ` k ) = ( F ` N ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ph /\ k = N ) -> ( abs ` ( F ` k ) ) = ( abs ` ( F ` N ) ) ) | 
						
							| 18 | 17 | breq2d |  |-  ( ( ph /\ k = N ) -> ( 0 < ( abs ` ( F ` k ) ) <-> 0 < ( abs ` ( F ` N ) ) ) ) | 
						
							| 19 | 15 18 | imbi12d |  |-  ( ( ph /\ k = N ) -> ( ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) <-> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) ) | 
						
							| 20 | 2 | eleq2i |  |-  ( k e. W <-> k e. ( ZZ>= ` N ) ) | 
						
							| 21 | 1 | uztrn2 |  |-  ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) | 
						
							| 22 | 20 21 | sylan2b |  |-  ( ( N e. Z /\ k e. W ) -> k e. Z ) | 
						
							| 23 | 3 22 | sylan |  |-  ( ( ph /\ k e. W ) -> k e. Z ) | 
						
							| 24 | 23 5 | syldan |  |-  ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) | 
						
							| 25 |  | absgt0 |  |-  ( ( F ` k ) e. CC -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ k e. W ) -> ( ( F ` k ) =/= 0 <-> 0 < ( abs ` ( F ` k ) ) ) ) | 
						
							| 27 | 6 26 | mpbid |  |-  ( ( ph /\ k e. W ) -> 0 < ( abs ` ( F ` k ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( ph -> ( k e. W -> 0 < ( abs ` ( F ` k ) ) ) ) | 
						
							| 29 | 3 19 28 | vtocld |  |-  ( ph -> ( N e. W -> 0 < ( abs ` ( F ` N ) ) ) ) | 
						
							| 30 | 13 29 | mpd |  |-  ( ph -> 0 < ( abs ` ( F ` N ) ) ) | 
						
							| 31 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 32 | 14 | eleq1d |  |-  ( ( ph /\ k = N ) -> ( k e. Z <-> N e. Z ) ) | 
						
							| 33 | 16 | eleq1d |  |-  ( ( ph /\ k = N ) -> ( ( F ` k ) e. CC <-> ( F ` N ) e. CC ) ) | 
						
							| 34 | 32 33 | imbi12d |  |-  ( ( ph /\ k = N ) -> ( ( k e. Z -> ( F ` k ) e. CC ) <-> ( N e. Z -> ( F ` N ) e. CC ) ) ) | 
						
							| 35 | 5 | ex |  |-  ( ph -> ( k e. Z -> ( F ` k ) e. CC ) ) | 
						
							| 36 | 3 34 35 | vtocld |  |-  ( ph -> ( N e. Z -> ( F ` N ) e. CC ) ) | 
						
							| 37 | 3 36 | mpd |  |-  ( ph -> ( F ` N ) e. CC ) | 
						
							| 38 | 37 | abscld |  |-  ( ph -> ( abs ` ( F ` N ) ) e. RR ) | 
						
							| 39 | 31 38 | ltnled |  |-  ( ph -> ( 0 < ( abs ` ( F ` N ) ) <-> -. ( abs ` ( F ` N ) ) <_ 0 ) ) | 
						
							| 40 | 30 39 | mpbid |  |-  ( ph -> -. ( abs ` ( F ` N ) ) <_ 0 ) | 
						
							| 41 | 10 | adantr |  |-  ( ( ph /\ F ~~> 0 ) -> N e. ZZ ) | 
						
							| 42 | 38 | adantr |  |-  ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) e. RR ) | 
						
							| 43 |  | simpr |  |-  ( ( ph /\ F ~~> 0 ) -> F ~~> 0 ) | 
						
							| 44 | 2 | fvexi |  |-  W e. _V | 
						
							| 45 | 44 | mptex |  |-  ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) e. _V ) | 
						
							| 47 | 24 | adantlr |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( F ` k ) e. CC ) | 
						
							| 48 |  | eqidd |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) = ( i e. W |-> ( abs ` ( F ` i ) ) ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> i = k ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( F ` i ) = ( F ` k ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) /\ i = k ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> k e. W ) | 
						
							| 53 |  | fvex |  |-  ( abs ` ( F ` k ) ) e. _V | 
						
							| 54 | 53 | a1i |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. _V ) | 
						
							| 55 | 48 51 52 54 | fvmptd |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) | 
						
							| 56 | 2 43 46 41 47 55 | climabs |  |-  ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> ( abs ` 0 ) ) | 
						
							| 57 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 58 | 56 57 | breqtrdi |  |-  ( ( ph /\ F ~~> 0 ) -> ( i e. W |-> ( abs ` ( F ` i ) ) ) ~~> 0 ) | 
						
							| 59 | 47 | abscld |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` k ) ) e. RR ) | 
						
							| 60 | 55 59 | eqeltrd |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) e. RR ) | 
						
							| 61 |  | 2fveq3 |  |-  ( i = N -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` N ) ) ) | 
						
							| 62 | 61 | breq2d |  |-  ( i = N -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) | 
						
							| 63 | 62 | imbi2d |  |-  ( i = N -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) ) | 
						
							| 64 |  | 2fveq3 |  |-  ( i = k -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` k ) ) ) | 
						
							| 65 | 64 | breq2d |  |-  ( i = k -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) | 
						
							| 66 | 65 | imbi2d |  |-  ( i = k -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) ) | 
						
							| 67 |  | 2fveq3 |  |-  ( i = ( k + 1 ) -> ( abs ` ( F ` i ) ) = ( abs ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 68 | 67 | breq2d |  |-  ( i = ( k + 1 ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) <-> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 69 | 68 | imbi2d |  |-  ( i = ( k + 1 ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` i ) ) ) <-> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 70 | 38 | adantr |  |-  ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) e. RR ) | 
						
							| 71 | 70 | leidd |  |-  ( ( ph /\ N e. ZZ ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) | 
						
							| 72 | 71 | expcom |  |-  ( N e. ZZ -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` N ) ) ) ) | 
						
							| 73 | 38 | ad2antrr |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) e. RR ) | 
						
							| 74 | 24 | adantr |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` k ) e. CC ) | 
						
							| 75 | 74 | abscld |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) | 
						
							| 76 | 2 | peano2uzs |  |-  ( k e. W -> ( k + 1 ) e. W ) | 
						
							| 77 |  | ovex |  |-  ( k + 1 ) e. _V | 
						
							| 78 |  | eleq1 |  |-  ( i = ( k + 1 ) -> ( i e. W <-> ( k + 1 ) e. W ) ) | 
						
							| 79 | 78 | anbi2d |  |-  ( i = ( k + 1 ) -> ( ( ph /\ i e. W ) <-> ( ph /\ ( k + 1 ) e. W ) ) ) | 
						
							| 80 |  | fveq2 |  |-  ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) | 
						
							| 81 | 80 | eleq1d |  |-  ( i = ( k + 1 ) -> ( ( F ` i ) e. CC <-> ( F ` ( k + 1 ) ) e. CC ) ) | 
						
							| 82 | 79 81 | imbi12d |  |-  ( i = ( k + 1 ) -> ( ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) <-> ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) ) ) | 
						
							| 83 |  | eleq1 |  |-  ( k = i -> ( k e. W <-> i e. W ) ) | 
						
							| 84 | 83 | anbi2d |  |-  ( k = i -> ( ( ph /\ k e. W ) <-> ( ph /\ i e. W ) ) ) | 
						
							| 85 |  | fveq2 |  |-  ( k = i -> ( F ` k ) = ( F ` i ) ) | 
						
							| 86 | 85 | eleq1d |  |-  ( k = i -> ( ( F ` k ) e. CC <-> ( F ` i ) e. CC ) ) | 
						
							| 87 | 84 86 | imbi12d |  |-  ( k = i -> ( ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) ) ) | 
						
							| 88 | 87 24 | chvarvv |  |-  ( ( ph /\ i e. W ) -> ( F ` i ) e. CC ) | 
						
							| 89 | 77 82 88 | vtocl |  |-  ( ( ph /\ ( k + 1 ) e. W ) -> ( F ` ( k + 1 ) ) e. CC ) | 
						
							| 90 | 76 89 | sylan2 |  |-  ( ( ph /\ k e. W ) -> ( F ` ( k + 1 ) ) e. CC ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( F ` ( k + 1 ) ) e. CC ) | 
						
							| 92 | 91 | abscld |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) e. RR ) | 
						
							| 93 |  | simpr |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) | 
						
							| 94 | 7 | adantr |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` k ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 95 | 73 75 92 93 94 | letrd |  |-  ( ( ( ph /\ k e. W ) /\ ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 96 | 95 | ex |  |-  ( ( ph /\ k e. W ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 97 | 20 96 | sylan2br |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 98 | 97 | expcom |  |-  ( k e. ( ZZ>= ` N ) -> ( ph -> ( ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 99 | 98 | a2d |  |-  ( k e. ( ZZ>= ` N ) -> ( ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 100 | 63 66 69 66 72 99 | uzind4 |  |-  ( k e. ( ZZ>= ` N ) -> ( ph -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) ) | 
						
							| 101 | 100 | impcom |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) | 
						
							| 102 | 20 101 | sylan2b |  |-  ( ( ph /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) | 
						
							| 103 | 102 | adantlr |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( abs ` ( F ` k ) ) ) | 
						
							| 104 | 103 55 | breqtrrd |  |-  ( ( ( ph /\ F ~~> 0 ) /\ k e. W ) -> ( abs ` ( F ` N ) ) <_ ( ( i e. W |-> ( abs ` ( F ` i ) ) ) ` k ) ) | 
						
							| 105 | 2 41 42 58 60 104 | climlec2 |  |-  ( ( ph /\ F ~~> 0 ) -> ( abs ` ( F ` N ) ) <_ 0 ) | 
						
							| 106 | 40 105 | mtand |  |-  ( ph -> -. F ~~> 0 ) | 
						
							| 107 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 108 | 8 107 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> M e. ZZ ) | 
						
							| 110 | 4 | adantr |  |-  ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F e. V ) | 
						
							| 111 |  | simpr |  |-  ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) | 
						
							| 112 | 5 | adantlr |  |-  ( ( ( ph /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 113 | 1 109 110 111 112 | serf0 |  |-  ( ( ph /\ seq M ( + , F ) e. dom ~~> ) -> F ~~> 0 ) | 
						
							| 114 | 106 113 | mtand |  |-  ( ph -> -. seq M ( + , F ) e. dom ~~> ) | 
						
							| 115 |  | df-nel |  |-  ( seq M ( + , F ) e/ dom ~~> <-> -. seq M ( + , F ) e. dom ~~> ) | 
						
							| 116 | 114 115 | sylibr |  |-  ( ph -> seq M ( + , F ) e/ dom ~~> ) |