| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvgrat.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | dvgrat.w | ⊢ 𝑊  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 3 |  | dvgrat.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 4 |  | dvgrat.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 5 |  | dvgrat.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 6 |  | dvgrat.n0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑘 )  ≠  0 ) | 
						
							| 7 |  | dvgrat.le | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 8 | 3 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 11 |  | uzid | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 12 | 11 2 | eleqtrrdi | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  𝑊 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  𝑁  ∈  𝑊 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  𝑘  =  𝑁 ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( 𝑘  ∈  𝑊  ↔  𝑁  ∈  𝑊 ) ) | 
						
							| 16 | 14 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( 0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ↔  0  <  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 19 | 15 18 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( ( 𝑘  ∈  𝑊  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  ↔  ( 𝑁  ∈  𝑊  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) | 
						
							| 20 | 2 | eleq2i | ⊢ ( 𝑘  ∈  𝑊  ↔  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 21 | 1 | uztrn2 | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 22 | 20 21 | sylan2b | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑘  ∈  𝑊 )  →  𝑘  ∈  𝑍 ) | 
						
							| 23 | 3 22 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  𝑘  ∈  𝑍 ) | 
						
							| 24 | 23 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 25 |  | absgt0 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ( 𝐹 ‘ 𝑘 )  ≠  0  ↔  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝐹 ‘ 𝑘 )  ≠  0  ↔  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 27 | 6 26 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑊  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 29 | 3 19 28 | vtocld | ⊢ ( 𝜑  →  ( 𝑁  ∈  𝑊  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 30 | 13 29 | mpd | ⊢ ( 𝜑  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 31 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 32 | 14 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( 𝑘  ∈  𝑍  ↔  𝑁  ∈  𝑍 ) ) | 
						
							| 33 | 16 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) ) | 
						
							| 34 | 32 33 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  ( ( 𝑘  ∈  𝑍  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ↔  ( 𝑁  ∈  𝑍  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) ) ) | 
						
							| 35 | 5 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 36 | 3 34 35 | vtocld | ⊢ ( 𝜑  →  ( 𝑁  ∈  𝑍  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) ) | 
						
							| 37 | 3 36 | mpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 38 | 37 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 39 | 31 38 | ltnled | ⊢ ( 𝜑  →  ( 0  <  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ↔  ¬  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  0 ) ) | 
						
							| 40 | 30 39 | mpbid | ⊢ ( 𝜑  →  ¬  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  0 ) | 
						
							| 41 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 42 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  𝐹  ⇝  0 ) | 
						
							| 44 | 2 | fvexi | ⊢ 𝑊  ∈  V | 
						
							| 45 | 44 | mptex | ⊢ ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ∈  V | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ∈  V ) | 
						
							| 47 | 24 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 48 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  ∧  𝑖  =  𝑘 )  →  𝑖  =  𝑘 ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  ∧  𝑖  =  𝑘 )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  ∧  𝑖  =  𝑘 )  →  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  𝑘  ∈  𝑊 ) | 
						
							| 53 |  | fvex | ⊢ ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  V | 
						
							| 54 | 53 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 55 | 48 51 52 54 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) ) ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 56 | 2 43 46 41 47 55 | climabs | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ⇝  ( abs ‘ 0 ) ) | 
						
							| 57 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 58 | 56 57 | breqtrdi | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ⇝  0 ) | 
						
							| 59 | 47 | abscld | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 60 | 55 59 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 61 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑁  →  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 62 | 61 | breq2d | ⊢ ( 𝑖  =  𝑁  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 63 | 62 | imbi2d | ⊢ ( 𝑖  =  𝑁  →  ( ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) | 
						
							| 64 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑘  →  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 65 | 64 | breq2d | ⊢ ( 𝑖  =  𝑘  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 66 | 65 | imbi2d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 67 |  | 2fveq3 | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 68 | 67 | breq2d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 69 | 68 | imbi2d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 70 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 71 | 70 | leidd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 72 | 71 | expcom | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 73 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 74 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 75 | 74 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 76 | 2 | peano2uzs | ⊢ ( 𝑘  ∈  𝑊  →  ( 𝑘  +  1 )  ∈  𝑊 ) | 
						
							| 77 |  | ovex | ⊢ ( 𝑘  +  1 )  ∈  V | 
						
							| 78 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝑖  ∈  𝑊  ↔  ( 𝑘  +  1 )  ∈  𝑊 ) ) | 
						
							| 79 | 78 | anbi2d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( 𝜑  ∧  𝑖  ∈  𝑊 )  ↔  ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  𝑊 ) ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 81 | 80 | eleq1d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( 𝐹 ‘ 𝑖 )  ∈  ℂ  ↔  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) ) | 
						
							| 82 | 79 81 | imbi12d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℂ )  ↔  ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  𝑊 )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) ) ) | 
						
							| 83 |  | eleq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ∈  𝑊  ↔  𝑖  ∈  𝑊 ) ) | 
						
							| 84 | 83 | anbi2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ↔  ( 𝜑  ∧  𝑖  ∈  𝑊 ) ) ) | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑖 )  ∈  ℂ ) ) | 
						
							| 87 | 84 86 | imbi12d | ⊢ ( 𝑘  =  𝑖  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℂ ) ) ) | 
						
							| 88 | 87 24 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 89 | 77 82 88 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  𝑊 )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 90 | 76 89 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 92 | 91 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 93 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 94 | 7 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 95 | 73 75 92 93 94 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 96 | 95 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 97 | 20 96 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 98 | 97 | expcom | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝜑  →  ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 99 | 98 | a2d | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 100 | 63 66 69 66 72 99 | uzind4 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 101 | 100 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 102 | 20 101 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 103 | 102 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 104 | 103 55 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝  0 )  ∧  𝑘  ∈  𝑊 )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( ( 𝑖  ∈  𝑊  ↦  ( abs ‘ ( 𝐹 ‘ 𝑖 ) ) ) ‘ 𝑘 ) ) | 
						
							| 105 | 2 41 42 58 60 104 | climlec2 | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  0 ) | 
						
							| 106 | 40 105 | mtand | ⊢ ( 𝜑  →  ¬  𝐹  ⇝  0 ) | 
						
							| 107 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 108 | 8 107 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  )  →  𝑀  ∈  ℤ ) | 
						
							| 110 | 4 | adantr | ⊢ ( ( 𝜑  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  )  →  𝐹  ∈  𝑉 ) | 
						
							| 111 |  | simpr | ⊢ ( ( 𝜑  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  )  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 112 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 113 | 1 109 110 111 112 | serf0 | ⊢ ( ( 𝜑  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  )  →  𝐹  ⇝  0 ) | 
						
							| 114 | 106 113 | mtand | ⊢ ( 𝜑  →  ¬  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 115 |  | df-nel | ⊢ ( seq 𝑀 (  +  ,  𝐹 )  ∉  dom   ⇝   ↔  ¬  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 116 | 114 115 | sylibr | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∉  dom   ⇝  ) |